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a b s t r a c t

This study analyzes an integrated inventory control and delivery scheduling problem in a stochastic
demand environment with economic and environmental considerations. In particular, we examine a bi-
objective continuous review inventory control model with order splitting among multiple suppliers,
where both expected costs and carbon emissions per unit time are minimized. For this problem, two
different delivery scheduling policies are considered for the split orders: sequential splitting and
sequential delivery. First, we formulate the problem under each delivery scheduling policy as bi-objective
mixed-integer nonlinear models. Then, an adaptive ϵ-constraint algorithm and an evolutionary search
algorithm are proposed to approximate the Pareto front of these models. A numerical study is conducted
to compare the two approximation algorithms. Another numerical study demonstrates the effects of the
demand variance on the expected costs and carbon emissions per unit time under each delivery sche-
duling policy. Finally, examples are presented to show how the tools provided in this study can be used
to compare different scheduling policies. Our results show that the delivery policy and supplier selection
both have strong effects on the economic and environmental performance, and also that a good
approximation of the Pareto front is crucial to accurately compare delivery scheduling policies.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

There is a growing consensus that carbon emissions are a
leading contributor to global climate change, which has increased
pressure around the world to enact legislation to curb these emis-
sions. Carbon emission regulations have emerged to address these
issues and incentivize firms to limit greenhouse gas (GHG) emis-
sions, primarily carbon-dioxide (other GHG emissions can be
measured in terms of carbon-dioxide, see, e.g., [47]). Environmental
regulations, however, are not the only motivation for companies to
replan their operations with environmental considerations. The
increased environmental awareness of consumers encourages firms
to “green” their operations to stay competitive, as is discussed in
surveys by Loebich et al. [89] and Kiron et al. [78].

Industrial and transportation sectors are the largest contributors
to GHG emissions. The industrial and transportation sectors gen-
erated 21% and 14%, respectively, of the global GHG emissions in
2010 [71] and 21% and 27%, respectively, of the U.S. GHG emissions
in 2013 [48]. Thus, a very large fraction of carbon emissions are due
to supply chain activities including manufacturing, inventory
holding, freight transportation, logistics and warehousing activities.

Inventory management is particularly important for a company
as this determines not only the level of inventory carried and
warehousing activities, but also impacts the amount and the fre-
quency of freight shipments and logistical operations. The inven-
tory control policy of a company, therefore, is inextricably linked
with its environmental performance. There is a growing body of
literature that analyzes inventory control models with environ-
mental considerations. As will be reviewed in Section 2, these
studies include environmental aspects of the inventory related
operations using different approaches. One approach is to associ-
ate direct costs with the environmental damage due to the
inventory related operations. Another approach models the
inventory control policies under environmental regulations such
as carbon cap, carbon tax, carbon trading, or carbon offsetting.
Considering environmental objectives such as emission mini-
mization along with the classical economic objectives such as cost
minimization (profit maximization) is another approach. In this
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Fig. 1. Inventory vs. time.
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study, we incorporate the environmental aspects of inventory
related operations by formulating an inventory control model with
environmental objectives.

Sawik [104,106] notes that jointly determining supplier selec-
tion, order allocation, and order scheduling decisions increases the
supply chain performance. Particularly, our focus is on a retailer's
integrated inventory control, supplier selection, and delivery sche-
duling problem with economic (cost minimization) and environ-
mental (emission minimization) objectives. We study the case of
stochastic continuous demand and assume a continuous review
inventory control system. The retailer can split his/her order among
an arbitrary number of heterogeneous suppliers. Furthermore, we
consider that the retailer can arrange when the split orders will be
received by scheduling the deliveries from the suppliers.

It should be noted that different delivery scheduling policies are
generally modeled for the supplier (or manufacturer) in two-
echelon supply chains in the context of shipment consolidation
(see, e.g., [25]) or multi-item inventory systems in the context of
joint replenishment problems (see, e.g., [76]). Unlike shipment
consolidation and joint replenishment problems, this study ana-
lyzes a single-echelon (retailer) and single-item stochastic inven-
tory system with order splitting among multiple heterogeneous
suppliers. With order splitting among multiple suppliers allowed,
the retailer can control different suppliers' delivery schedules by
changing the order release times to the suppliers. For instance, in a
single buyer-multiple suppliers setting, Kim and Goyal [77] consider
two different delivery schedules, which they refer to as lumpy and
phased deliveries. In case of lumpy deliveries, the orders from dif-
ferent suppliers are delivered simultaneously, while different sup-
pliers' orders are delivered alternately in case of phased deliveries.
Glock [57] defines six delivery schedules regarding the production
cycles of two manufacturers with delivery at the single buyer. Both
studies consider two-echelons (buyer and vendor) simultaneously
and assume deterministic demand.

Single-echelon single-item stochastic inventory control models
with order splitting among multiple suppliers have been studied in
the literature (see, e.g., the reviews by [95,119]). In most of these
studies, the split orders are assumed to be delivered sequentially
(see, e.g., [32–35,110–112,42,1]). That is, the retailer places his/her
order with all selected suppliers at the same time, so that the
supplier with the shortest realized lead time delivers first, the
supplier with the second shortest realized lead time delivers sec-
ond, and so on. Sawik [105] emphasizes the importance of multiple
sourcing along supply chains subject to uncertainties and, as noted
by Glock [57] as well, the delivery schedule of the orders from
multiple sources affects the inventory related costs. Furthermore, as
discussed in this study, different delivery schedules have different
environmental performance. Therefore, it is important to account
for different delivery scheduling policies within inventory control
models with environmental considerations.

In this study, we model a single retailer's stochastic inventory
control problem with order splitting decisions among multiple sup-
pliers under two different delivery scheduling policies, namely
sequential splitting and sequential delivery. Under sequential deliv-
ery, the retailer splits each order among the selected suppliers and
places all these orders simultaneously; thus the retailer receives the
split orders from different suppliers sequentially due to the suppliers'
varying lead times (similar to phased deliveries defined in Kim and
Goyal [77] as well as the aforementioned single-item stochastic
inventory control models with order splitting). On the other hand,
under sequential splitting, the retailer splits each order among dif-
ferent suppliers and places them such that all the split orders from
the different suppliers are delivered at the retailer simultaneously
(similar to lumpy deliveries defined in Kim and Goyal [77]).

Specifically, given identical split orders and re-order points, the
average inventory held will be lower under sequential splitting,
because by delaying order delivery it allows inventory to fall to a
lower level before all orders arrive together. This is shown in Fig. 1,
which illustrates the retailer's inventory over time under
sequential splitting (Fig. 1a) and sequential delivery (Fig. 1b) when
an order is split among three suppliers such that τ1oτ2oτ3 and
qi is the part of the order to be delivered by supplier i. However,
the average number of units short is expected to be smaller under
sequential delivery due to the higher average inventory level (see
Fig. 1b vs. Fig. 1a). Because both inventories held and units short
will have an impact on the economic and environmental perfor-
mance of a retailer, it is essential to analyze the inventory control
system under each scheduling policy regarding their economic
and environmental tradeoffs.

Most of the studies on the stochastic inventory control models
with order splitting focus on economically comparing order split-
ting under sequential delivery to single sourcing, i.e., when order
splitting is not allowed. The focus of our study is to assess not only
the economic but also the environmental effects of a retailer's
inventory control, order splitting, and delivery scheduling decisions.
Because different suppliers can have distinct points of origin and/or
transportation units used for delivery, we allow suppliers to vary in
their shipping specifications (delivery lead times and shipment
capacities) and transportation costs (unit transportation and fixed
delivery costs), as well as environmental characteristics (per unit
and fixed emissions generation from deliveries). We first formulate
the retailer's inventory control, order splitting, and supplier selec-
tion decisions as a bi-objective mixed-integer nonlinear program-
ming model under each delivery scheduling policy. To solve these
models, we discuss application of an adaptive ϵ-constraint algo-
rithm and propose an evolutionary search algorithm to approx-
imate the Pareto fronts of these bi-objective models. Our numerical
studies indicate that the proposed evolutionary search algorithm is
more efficient than the adaptive ϵ-constraint algorithm. Another set
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of numerical studies shows the effects of the stochastic demand on
the retailer's costs and emissions. Finally, through sample scenarios,
we demonstrate how a retailer can use the tools provided in this
study to select a delivery scheduling policy in consideration of both
economic and environmental targets.

The rest of the paper is organized as follows. In Section 2, we
review inventory control models with environmental considerations
and related studies. Section 3 discusses the settings of the problem
and formulates the retailer's bi-objective optimization problems
under sequential splitting and sequential delivery policies. Section 4
discusses the application of the adaptive ϵ-constraint algorithm and
provides the details of the evolutionary search algorithm as Pareto
front approximation methods. Numerical studies are presented in
Section 5 and concluding remarks, a summary of contributions, and
future research directions are given in Section 6.
2. Literature review

In a broad sense, our research considers inventory control models
with multiple sources of supply, supplier selection, and order split-
ting. Minner [95], Thomas and Tyworth [119], and Aissaoui et al. [5]
provide reviews of inventory control models with supplier selection
and order splitting. Inventory control models with supplier selection
under stochastic demand are grouped into two classes: models with
deterministic and stochastic lead times [95,101]. Similar to Moinza-
deh and Nahmias [96], Moinzadeh and Schmidt [97], Zhang [127],
Chiang and Gutierrez [35], and Jain et al. [73], we assume that the
suppliers have deterministic lead times, i.e., they are reliable.

Sustainability has been considered in various operations and
supply chain management settings (see, e.g., the reviews by
[38,39,87,115,49]) and supplier evaluation and selection models
have been intensively studied in the literature (see, e.g., the
reviews by [65,26]). With the increasing sustainability concerns
along supply chains, environmental considerations have also been
incorporated in supplier selection models (see, e.g., [85] for a
comprehensive approach and [56,59,70,130] for reviews of green
supplier selection models). In this study, we integrate sustain-
ability in an inventory control model with order splitting allowed
among multiple sources of supply (i.e., suppliers).

Environmental aspects of the inventory related operations are
commonly integrated into deterministic models, such as the eco-
nomic order quantity (EOQ) or deterministic economic lot sizing
(ELS) models and their variations, through either modeling envir-
onmental regulations such as carbon cap, taxing, trading, and off-
setting (see, e.g., [69,72,10,29,120,83,79,108,63,68] for EOQ models
and [14,2,3,100,64,67,129] for ELS models with environmental
regulations), or by associating direct costs with environmental
pollution generated from inventory control related operations (see,
e.g., [19,125,12] for EOQ models with environmental costs), or
incorporating environmental objectives along with the classical
economic objectives (see, e.g., [20,27,21,7,84] for EOQ models and
[90,11,46] for ELS models with environmental objectives). Our study
analyzes a stochastic demand continuous review inventory control
model with multiple suppliers and environmental considerations.
Therefore, in the following review, our focus is on the stochastic
inventory control studies that account for environmental aspects of
the inventory related operations and, among those, we distinguish
the ones that consider multiple supply sources.

Most of the stochastic inventory control models with envir-
onmental considerations revisit the classical single-period sto-
chastic demand model, i.e., the Newsvendor model. The News-
vendor model maximizes the expected profits due to a single
order by considering the costs associated with unsold items in
case of overage and unmet demand in case of underage. Chen and
Monahan [28], Song and Leng [113], Zhang and Xu [126], Choi
[36,37], Liu et al. [88], Rosic and Jammernegg [103], Hoen et al.
[66], Arikan and Jammernegg [9], Chen and Wang [31], Chen et al.
[30] and Manikas and Kroes [92] study the Newsvendor model and
its variations (including multi-mode, multi-item, and multi-period
settings) under environmental regulations. Brito and de Almeida
[22] model a multi-objective Newsvendor model with environ-
mental objectives. Among these studies, Hoen et al. [66] and Chen
and Wang [31] consider different modes of transportation and
Choi [36,37], Rosic and Jammernegg [103], and Arikan and Jam-
mernegg [9] integrate different sourcing channels (dual sourcing
with a local and an off-shore supplier) as alternative options.

Other than the Newsvendor model, variants of the economic
lot-sizing (ELS) model with stochastic demand have been recently
analyzed with environmental regulations (see [58,54,102,128])
and environmental objectives (see [107]). Except Purohit et al.
[102], all of these studies consider multiple modes for either
transportation or production.

In this study, unlike the single-period Newsvendor or multi-
period ELS models with stochastic demand, we study an inventory
control model over an infinite planning horizon. In particular, we
analyze a continuous review inventory control model with order
splitting allowed among an arbitrary number of capacitated het-
erogeneous suppliers. There are a limited number of studies
integrating environmental considerations over infinite planning
horizons. Arikan et al. [8] numerically demonstrate how the costs
and carbon emissions generated change with different transpor-
tation modes and delivery lead times when a cost or an emission
minimizing order quantity re-order point policy (i.e, (Q,R) model)
is used for ordering decisions. Fichtinger et al. [51] use simulation
to evaluate the effects of integrated inventory and warehouse
management activities assuming a (Q,R) model with a fixed safety
stock (which basically reduces the model to an EOQ formulation).
Mallidis et al. [91] study a bi-objective integrated periodic review
inventory control and network design model with cost and
emission minimization objectives and Tang et al. [118] study a
periodic review inventory control model with an emission target.

This study is most related to Schaefer and Konur [109], which
analyzes two bi-objective (Q,R) models, where costs and emissions
are jointly minimized: one with less-than-truckload transporta-
tion and one with truckload transportation. For each model, they
propose a method to approximate the Pareto frontier and then
numerically evaluate the effects of demand variability and lead
time on the costs and emissions with each transportation mode.
Finally, they discuss that a retailer can prefer either mode
depending on his/her economic and environmental targets. Simi-
lar to Schaefer and Konur [109], we formulate bi-objective (Q,R)
models with cost and emission minimization objectives; however,
we allow order splitting among multiple suppliers, who have
distinct cost, delivery, and environmental characteristics. As noted
by Aguezzoul [4], these characteristics are the most commonly
used evaluation criteria for selecting third-party logistics provi-
ders. Furthermore, we consider two different delivery scheduling
policies for the selected suppliers.

To the best knowledge of the authors, the integrated con-
tinuous review inventory control and delivery scheduling problem
under stochastic demand with environmental considerations has
not been analyzed in the literature. As noted above, while there is
a growing body of literature on environmental inventory control
models, most of these studies assume deterministic demand or
stochastic demand in the single period or finite planning horizon.
Furthermore, while stochastic inventory control models with
order splitting have been analyzed extensively, different delivery
scheduling policies are not considered in such models in terms of
both economic and environmental aspects. This study, therefore,
contributes to the body of literature on inventory control models
with environmental considerations by (i) integrating supplier
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selection and order splitting decisions in continuous review
inventory systems, (ii) modeling different delivery scheduling
policies, (iii) providing efficient solution methods for the problem
of interest, and (iv) investigating how different scheduling policies
compare in terms of economic and environmental performance. In
the next section, we explain the details of the settings and for-
mulation of the models.
3. Problem formulation

We consider a retailer's inventory control and delivery sche-
duling problem for a single item which has stochastic demand. It is
assumed that the inventory is continuously reviewed, i.e., the
retailer knows the inventory level at any moment. In case of con-
tinuous inventory review, a common inventory control policy
adopted is the (Q,R) model, where Q denotes the order quantity and
R denotes the re-order point. That is, whenever the inventory on
hand falls to R, an order of Q units is placed. Therefore, we analyze a
(Q,R) model with supplier selection under different delivery sche-
dules and consider that the basic assumptions of continuous review
inventory control models hold: stationary continuous demand, full
backorders, and at most one outstanding order (see [60]). Further,
we use the normal distribution for modeling the stochastic demand
as it is appropriate in many retail scenarios (with the exception of
slow-moving products; see, e.g., [16]), and is robust in continuous
review inventory systems (see, e.g., [98,123,112]). Later, in Section
3.3, we discuss generalizations to other demand distributions such
as gamma and Poisson. However, the solution methods discussed in
Section 4 are rather generic.

In particular, let the demand per unit time for the item be a
normally distributed random variable with mean λ and standard
deviation υ. We therefore assume that the demand during a time
period of t is normally distributed with mean λt and standard
deviation υ

ffiffi
t

p
(see, e.g., [99]). Let ft(y) and Ft(y) denote the prob-

ability density and cumulative probability functions, respectively,
of the normally distributed random variable y with mean λt and
standard deviation υ

ffiffi
t

p
. Due to stochastic demand, there might be

shortages and let nðr; tÞ be the expected number of units short over
a time period t when the starting inventory is r. It then follows
that nðr; tÞ ¼ R1

r ðy�rÞf tðyÞdy. As noted before, we assume that all
of the shortages are backordered.

In the settings of the classical (Q,R) model, the retailer incurs
inventory holding, penalty, procurement, and order setup costs, and
carbon emissions are generated due to inventory holding, back-
ordering, procurement, and order setup operations (see, e.g., [109]).
Similar to [109], we define ~hZ0, ~pZ0, ~cZ0, and ~AZ0 as the
inventory holding cost per unit per unit time, penalty cost per unit
backordered, purchase cost per unit, and order setup cost, respec-
tively; and analogously, bhZ0, bpZ0, bcZ0, and bAZ0 as the carbon
emissions generated from inventory holding per unit per unit time,
per unit backorder, per unit procurement, and order setup,
respectively. We note that similar parameters are commonly used in
the literature and we refer the reader to the cited studies for jus-
tifications of using these parameters. It should be further noted that
when the carbon emissions are only due to freight transportation,
or only some of the above activities contribute to the retailer's
carbon emissions, one can define the parameters of the other
activities to be zero. However, in order to have more generalized
settings, we formulate the retailer's problem with all of the above
parameters. In this study, we explicitly model the costs and carbon
emissions of order delivery assuming that the retailer can use a set
of suppliers for delivering his/her order.

Suppose that the retailer can split and, thereby, partially deliver
his/her order quantity with a set of n suppliers, indexed by i such
that iA I where I ¼ f1;2;…;ng (these suppliers can also be
considered to represent the carriers in freight carrier selection
context and different transportation modes in mode selection
context). As different suppliers might have distinct characteristics
with regard to their vehicles, shipment requirements, pricing
schemes, and environmental impacts, we assume that the retailer
incurs different costs and that varying carbon emissions are gen-
erated for each supplier. We define ~ai and ~ei, respectively, as the
fixed and variable delivery cost with supplier i (similar to the
approach in [73,109]). The fixed delivery cost ~ai may vary as noted
by [117] due to different geographical locations of suppliers. The
variable delivery cost ~ei is the additional transportation cost for
each unit delivered by supplier i. Similarly, we define bai and bei,
respectively, as the retailer's fixed and variable carbon emissions
due to delivery with supplier i. Here, bai can be considered as the
carbon emissions generated due to the empty weight of the
transportation unit (e.g., a truck) and bei is the carbon emissions
generated from each additional unit loaded to the truck (similar
parameters are defined in [69,29,79,83,109]). Furthermore, we
assume that the suppliers' shipment capacities and lead times vary
and we define wi and τi as supplier i's transportation capacity and
delivery lead time, respectively.

The retailer's order can be split among different suppliers and
the deliveries by different suppliers can be scheduled by the
retailer in order to reduce costs and/or carbon emissions. As noted
in Section 1, we consider two delivery scheduling policies:
sequential splitting and sequential delivery. Under sequential
splitting, the retailer sequentially splits his/her order among dif-
ferent suppliers considering their lead times such that the split
orders are delivered at the same time (see Fig. 1a). Here, the
retailer will start splitting his/her order (i.e., place the first order)
when the inventory level is R. This schedule is defined similar to
lumpy deliveries explained in Kim and Goyal [77]. Under
sequential delivery, the retailer splits his/her order among differ-
ent suppliers at the same time (when the inventory level falls to
R); hence, the split orders are delivered sequentially due to varying
lead times of the suppliers (see Fig. 1b). As noted in Section 1,
single-item stochastic inventory control models with order split-
ting typically assume sequential delivery. Under sequential deliv-
ery, we assume that the next order is not placed until the partial
order allocated to the last supplier is delivered.

Under both sequential splitting and sequential delivery, the
retailer must determine which supplier to use, how much to
deliver with each supplier, and when to start order splitting
among the suppliers. Let

xi ¼
1 if supplier i is used for delivery;
0 otherwise

�
and x be the binary n-vector of xi values. Furthermore, recall that qi
is the quantity delivered by supplier i at each replenishment and
let q denote the n-vector of qi values. Note that if xi¼0 then qi¼0,
and if xi¼1 then qirwi. As defined previously, R is the re-order
point, which defines the point when order splitting starts under
sequential splitting and the point when all orders are placed under
sequential delivery. Also, Q ¼PiA Iqi. In what follows, we for-
mulate the retailer's inventory control, supplier selection, and
order splitting problem under each delivery scheduling policy as a
bi-objective optimization problem, where the expected costs and
carbon emissions per unit time are minimized (Section 3.3 dis-
cusses how to modify these models as single-objective optimiza-
tion problems that associate direct costs to emissions or consider
environmental regulations). Table 1 summarizes the notation used
and possible metrics for each parameter. Additional notation will
be defined as needed.



Table 1
Notation.

Notation Description Metric

Demand parameters
λ Expected demand rate units/year
υ Standard deviation of demand rate units
y Normally distributed random variable with λt and

υ
ffiffi
t

p units

ft(y) Probability density function of y
Ft(y) Cumulative distribution function of y

Retailer parameters
~h Inventory holding cost per unit per unit time $/unit/year
~p Unit backorder cost $/unit
~c Unit procurement cost $/unit
~A Fixed order setup cost $/orderbh Emissions due to inventory holding per unit per

unit time
CO2 lbs/unit/
yearbp Emissions due to per unit backorder CO2 lbs/unitbc Emissions due to per unit procurement CO2 lbs/unitbA Emissions due to order placement CO2 lbs/order

Retailer's decision variables
xi 1 if supplier i is used for delivery, 0 otherwise
x n-vector of xi values
qi Partial order delivered by supplier i units
q n-vector of qi values
R Re-order point for starting order splitting units

Supplier parameters
τi Delivery lead time of supplier i year
wi Transportation capacity of supplier i per order units
~ai Fixed delivery charge by supplier i $/order
~ei Variable transportation cost of supplier i $/unitbai Fixed delivery emissions due to supplier i CO2 lbs/orderbei Variable transportation emissions of supplier i CO2 lbs/unit
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3.1. Sequential splitting

If the retailer adopts the sequential splitting policy, we define
the effective lead time as the maximum of the lead times of the
selected suppliers, i.e., the time from when the retailer starts
splitting his/her order among the selected suppliers until the split
orders are simultaneously received (in other studies, where
sequential delivery is assumed, effective lead time is commonly
defined as the minimum lead time of the selected suppliers, see,
e.g., [111,110,52]). Let τðxÞ denote the effective lead time when the
supplier selection decision is given by x. It then follows that

τðxÞ ¼max
iA I

fτixig: ð1Þ

The retailer's expected procurement cost per unit time amounts to
~cλ. Furthermore, the expected inventory level with sequential
splitting is defined similar to the classical (Q,R) model and one can
derive that ~h R�λτðxÞþ1

2

P
iA Iqi

� �
is the expected inventory hold-

ing cost per unit time, as the average inventory varies between
RþQ�λτðxÞ and R�λτðxÞ (see, e.g., [60]). Similarly, it can be
argued that the expected cycle length is 1

λ

P
iA Iqi; thus, the

expected order setup cost per unit time equals λ ~AP
iA I

qi
. Further-

more, since shortages can occur during the effective lead time, the
expected number of units short per cycle is nðR; τðxÞÞ. As the
demand per unit time is normally distributed with λ and υ, it can
be shown that nðR; τðxÞÞ ¼ υ

ffiffiffiffiffiffiffiffiffi
τðxÞ

p
LððR�λτðxÞÞ=υ

ffiffiffiffiffiffiffiffiffi
τðxÞ

p
Þ, where L(z)

is the standard loss function (see, e.g., [99]). It then follows that
the expected backordering cost per unit time is equal to ~pλnðR;τðxÞÞP

iA I
qi

.

In addition to these costs, the retailer incurs delivery costs. Note
that ~aixi is the fixed delivery cost paid to supplier i in each cycle;
therefore, the total expected fixed delivery cost per unit time

amounts to
λ
P

iA I
~aixiP

iA I
qi

. Moreover, ~eiqi is the variable transportation
cost charged by supplier i per order; hence,
λ
P

iA I
~eiqiP

iA I
qi

is the total

expected variable transportation cost per unit time. Putting all
these together, the retailer's expected cost per unit time under
sequential splitting as a function of the decision variables R, q, and
x, denoted by C1ðR;q; xÞ, is

C1ðR;q; xÞ ¼ ~cλþλ
P

iA I ~eiqiP
iA Iqi

þ ~h R�λτðxÞþ1
2

X
iA I

qi

 !

þ
λ ~AþPiA I ~aixi
� �
P

iA Iqi
þ ~pλnðR; τðxÞÞP

iA Iqi
; ð2Þ

where the first, second, third, fourth, and the last terms are the
expected procurement, transportation, inventory holding, order
setup and fixed delivery, and backordering cost per unit time,
respectively, with τðxÞ defined in Eq. (1).

The expected carbon emissions generated from inventory
related operations can be defined similar to the expected inven-
tory related costs given in Eq. (2). Particularly, it can be shown that
the retailer's expected carbon emissions per unit time under
sequential splitting as a function of the decision variables R, q, and
x, denoted by E1ðR;q; xÞ, is

E1ðR;q; xÞ ¼ bcλþλ
P

iA IbeiqiP
iA Iqi

þbh R�λτðxÞþ1
2

X
iA I

qi

 !

þ
λ bAþPiA Ibaixi
� �
P

iA Iqi
þbpλnðR; τðxÞÞP

iA Iqi
; ð3Þ

where the first, second, third, fourth, and the last terms are the
expected carbon emissions generated per unit time from pro-
curement, transportation, inventory holding, order setup and
deliveries, and backordering operations, respectively, such that
τðxÞ is defined in Eq. (1).

Here we consider that the retailer has the objectives of mini-
mizing his/her expected total costs and expected total carbon
emissions per unit time. Then the retailer's bi-objective optimi-
zation problem under sequential splitting (P1) can be formulated
as follows:

ðP1Þ : min C1ðR;q; xÞ
min E1ðR;q; xÞ
s:t: 0rqirxiwi 8 iA I

xiAf0;1g 8 iA I

R40:

In P1, the first set of constraints guarantees that the retailer allo-
cates the order among the selected suppliers only, and that the
split order quantities are non-negative and less than or equal to
the supplier's transportation capacity. The second set of con-
straints is the binary definitions of xi values and the third con-
straint is the non-negativity of the re-order point.

3.2. Sequential delivery

In the case the retailer adopts the sequential delivery policy,
the retailer's expected procurement cost per unit time amounts to
~cλ as in the case of sequential splitting. Under sequential delivery
policy, we define a cycle as the time between placing two con-
secutive (split) orders; therefore, the expected cycle length can be
defined similar to the classical (Q,R) model. That is, the expected
cycle length is 1

λ

P
iA Iqi. Similar to the case of sequential splitting, it

then follows that the expected order setup cost per unit time is
equal to λ ~AP

iA I
qi
, total expected fixed delivery cost per unit time

amounts to
λ
P

iA I
~aixiP

iA I
qi

, and total expected variable transportation

cost per unit time is equal to
λ
P

iA I
~eiqiP

iA I
qi

. Defining the expected
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inventory holding cost and expected penalty cost per unit time, on
the other hand, is different than the sequential splitting policy. To
do so, without loss of generality, let us assume that the suppliers
are sorted such that τ1oτ2o⋯oτn.

Given that xi¼1 8 iA I, for instance, note that the average
inventory varies between R and R�λτ1 from the moment orders
are placed (say t) until the moment right before the first split
order is delivered, i.e., over time ½t ; tþτ1Þ (see Fig. 1b). Similarly,
the inventory level between receiving the first and second split
orders varies between R�λτ1þq1 and R�λτ2þq1 over time
½tþτ1; tþτ2Þ. Now, let τnþ1 denote the average cycle length,
i.e., τnþ1 ¼

P
iA Iqi=λ and τ0 ¼ 0. For a normally distributed

demand rate, the average inventory held over a cycle will be equal
to the sum of the areas under nþ1 right-trapezoids, where the
ith trapezoid has edges of length R�λτi�1þ

P
jr i�1qj and R�λτi

þPjr i�1qj and width (height) of length τi�τi�1 for iA I. This is
illustrated in Appendix A.1 for n¼3. After simplifications, the sum
of the areas of these trapezoids totals τnþ1 Rþ1

2

P
iA Iqi

� ��PiA Iτiqi.
Then, multiplying this total area by ~h and dividing by the cycle
length τnþ1 ¼

P
iA Iqi=λ, the expected inventory holding cost per

unit time for any x is equal to ~h R�λ
P

iA I
τiqiP

iA I
qi

þ1
2

P
iA Iqi

� 	
, where we

guarantee that qi¼0 if xi¼0 by adding constraints in the retailer's
optimization problem. The expected carbon emission generated
due to inventory holding is defined similarly. It is worthwhile to

note that given the same ðR;q;xÞ, τðxÞZ
P

iA I
τiqiP

iA I
qi
; and thus,

~h R�λτðxÞþ1
2

P
iA Iqi

� �
r ~h R�λ

P
iA I

τiqiP
iA I

qi
þ1

2

P
iA Iqi

� 	
, i.e., sequential

delivery results in the same or higher level of expected inventory
holding cost compared to sequential splitting.

Now, we focus on defining the expected penalty cost per unit
time. To do so, we first calculate the expected number of units
short within one cycle. Shortages can occur during the time per-
iods from the moment the order is split until the first delivery is
received, from the moment the first delivery is received until the
second delivery is received, and so on. Let yi be the random vari-
able defining the inventory right before receiving supplier i's
delivery. Furthermore, let us define zij ¼maxf0; ðτi�τjÞ=jτi�τj j g.
That is,

zij ¼
1 if τi4τj;
0 otherwise;

(

such that zii ¼ 0. Then, one can show that yi is a normally dis-
tributed random variable with mean μiðR;q; xÞ ¼ xiðRþ

P
jA Izijqj�

λτiÞ and σiðxÞ ¼ xiυ
ffiffiffiffi
τi

p
. By definition of yi, it follows that the

expected number of units short right after the previous supplier's
delivery is received until right before supplier i's delivery is
received is niðR;q; xÞ ¼ � R 0�1 yi f

iðyiÞdyi, where f iðyiÞ is the normal
density function with mean μiðR;q; xÞ and standard deviation σiðxÞ.
It then follows that

niðR;q; xÞ ¼ �μiðR;q;xÞþσiðxÞL �μiðR;q; xÞ=σiðxÞ
� �

; ð4Þ

where L(z) is the standard loss function. That is, the expected
number of total units short within one replenishment cycle isP

iA IniðR;q; xÞ. One can note that, given the same ðR;q; xÞ, for any
demand realization, the units of short under sequential delivery
will be less than or equal to the units of short under sequential
splitting because more inventory will be available under sequen-
tial delivery right after receiving the split order from the first
supplier.

From the above discussion, the retailer's expected costs per
unit time under sequential delivery as a function of the decision
variables R, q, and x, denoted by C2ðR;q; xÞ, is

C2ðR;q; xÞ ¼ ~cλþλ
P

iA I ~eiqiP
iA Iqi

þ ~h R�λ
P

iA IτiqiP
iA Iqi

þ1
2

X
iA I

qi

 !

þ
λ ~AþPiA I ~aixi
� �
P

iA Iqi
þ ~pλ

P
iA IniðR;q; xÞP

iA Iqi
; ð5Þ

where the first, second, third, fourth and the last terms are the
expected procurement, inventory holding, order setup and fixed
delivery, and penalty cost per unit time, respectively, such that ni

ðR;q; xÞ is defined in Eq. (4).
The expected carbon emissions generated from inventory

related operations can be defined similar to the expected inven-
tory related costs given in Eq. (5). Particularly, it can be shown that
the retailer's expected carbon emissions per unit time under
sequential delivery as a function of the decision variables R, q, and
x, denoted by E2ðR;q; xÞ, is

E2ðR;q; xÞ ¼ bcλþλ
P

iA IbeiqiP
iA Iqi

þbh R�λ
P

iA IτiqiP
iA Iqi

þ1
2

X
iA I

qi

 !

þ
λ bAþPiA Ibaixi
� �
P

iA Iqi
þbpλPiA IniðR;q; xÞP

iA Iqi
; ð6Þ

where the first, second, third, fourth and the last terms are the
expected carbon emissions generated per unit time from pro-
curement, transportation, inventory holding, order setup and
deliveries, and backordering operations, respectively, such that ni

ðR;q; xÞ is defined in Eq. (4).
Similar to P1, the retailer's bi-objective optimization problem

under sequential delivery can be formulated as follows:

ðP2Þ : min C2ðR;q; xÞ
min E2ðR;q; xÞ
s:t: 0rqirxiwi 8 iA I

xiAf0;1g 8 iA I

R40:

The constraints are identical to those in P1.

3.3. Generalizations of the models

This section provides generalizations of P1 and P2 to consider
different approaches to integrate environmental considerations
and different demand distributions.

As noted in Section 1, there are several approaches to model
environmental considerations. In P1 and P2, we consider envir-
onmental objectives in addition to the classical economic objec-
tives. Other common approaches are associating costs with the
emissions generated and modeling environmental regulations. In
particular, let us define B jðR;q;xÞ ¼ CjðR;q; xÞþψ EjðR;q;xÞ�Φ

� �
and let P0J be the following single-objective optimization problem:
minfBjðR;q; xÞ : 0rqirxiwi 8 iA I; xiAf0;1g 8 iA I; R40g. Now,
letting Φ¼ 0 and ψ be the cost of unit emission generated, P0J is
the model adapting the approach of associating costs to the
emissions. Similarly, letting Φ¼ 0 and ψ define the tax per unit
emission generated, P0J represents the tax regulation model.
Finally, by letting Φ40 denote the emission cap and ψ be the
emission trading price, then P0J is the cap-and-trade model. Also,
we note that both the costs and emissions are defined per unit
time as it is the common approach considering an infinite plan-
ning horizon (see, e.g., [109]). Since the average demand rate
(number of units per unit time) is λ, one can use CjðR;q; xÞ=λ and
EjðR;q; xÞ=λ as the expected cost and expected emissions per unit,
respectively. Therefore, when λ is a constant, defining the costs
and emissions per unit of product will not change the analyses.



D. Konur et al. / Omega 71 (2017) 46–6552
Next, we discuss how to modify P1 and P2 for different
demand distributions, and specifically the gamma and Poisson
distributions. To do so, let us define f tðytÞ and FtðytÞ as the prob-
ability density and cumulative probability functions, respectively,
of the random variable yt such that yt denotes the demand over t
time units (ft(y), Ft(y), and y are still defined per unit time). Fur-
thermore, let λt and υt be the mean and standard deviation of yt,
respectively. Since the cycle length definition will not change, only
the third and fifth terms of the objective functions, i.e., inventory
holding and backordering related costs and emissions, will change
under each scheduling policy. In particular, for sequential splitting,
it is easily shown that the expected inventory held per unit time
will be R�λτðxÞ þ1

2

P
iA Iqi

� �
and the expected number of units short

per cycle will be nðR; τðxÞÞ ¼ R1
R ðyτðxÞ �RÞf τðxÞðyτðxÞÞdyτðxÞ, where τðxÞ

is still given by Eq. (1).
For sequential delivery, the expected inventory held per unit

time will be similarly defined as the sum of the areas of nþ1 tra-
pezoids (see Appendix A.1). Specifically, given τioτiþ18 irn�1,
τ0 ¼ 0, and τnþ1 ¼

P
iA Iqi=λ, the ith trapezoid will have edges of

length ria ¼ R�P1r jr i�1λðτj � τj� 1Þ þ
P

1r jr i�1qj and rib ¼ R�P
1r jr iλðτj �τj� 1Þ þ

P
1r jr i�1qj, and width (height) of length τi�

τi�1 for iA I. Thus, the expected inventory held per cycle will bePn
i ¼ 1ðriaþribÞðτi�τi�1Þ=2 for any given x as long as qi¼0 when

xi¼0 (note that when λτ ¼ λτ, we have the same equations as
defined previously). Finally, the expected number of units short
right before receiving the order from supplier i will be
niðR;q; xÞ ¼

R1
Rþ
P

jA I
zijqj

�
yτi �R�PjA Izijqj

�
f τi ðyτi Þdyτi , and therefore

the total expected number of units short per cycle will beP
iA IniðR;q; xÞ.
Now, suppose that the demand per unit time has a gamma

distribution with α and β as the shape and scale parameters,
respectively, and let this be denoted by gðα;βÞ (given that the
demand per unit time has mean λ, standard deviation υ, and
gamma distribution, the shape parameter α and the scale para-
meter β can be estimated as α¼ λ2=υ2 and β¼ υ2=λ, see, e.g.,
[24,121,75]). One can note that λ¼ αβ and υ¼ ffiffiffiffi

α
p

β (see, e.g.,
[112]). Then, the demand over τ discrete time units will be gðτα;βÞ
with mean τλ. Therefore, the expressions for the expected inven-
tory held per cycle will be identical to the case with normally
distributed demand per unit time under both sequential splitting
and sequential delivery. Furthermore, for normally distributed
demand, we used the standard loss function (L(z)) for determining
the expected number of units short per cycle. Similarly, for gamma
distributed demand, one can use the so-called gamma loss func-
tion. In particular, given the demand per unit time has a gamma
distribution gðα;βÞ, then nðR; τðxÞÞ ¼ τðxÞαβ 1�GðR; τðxÞαþ1;βÞ� ��
R 1�GðR; τðxÞα;βÞ� �

under sequential splitting, where GðR; a; bÞ
is the cumulative distribution function of gða; bÞ at R (see,
e.g., [41,122,121]). For sequential delivery, following the same

logic, we have niðR;q; xÞ ¼ τiαβ 1�G RþPjA Izijqj; τiαþ1;β
� �� �

�
RþPjA Izijqj

��
1

�
�G RþPjA Izijqj; τiα;β
� ��

.
Finally, the Poisson distribution is typically used for modeling

the discrete demand of slow-moving items such as spare parts
(see, e.g., [112,99]). When the unit demand is discrete, the analysis
of the classical (Q,R) model is typically based on renewal processes
(see, e.g., [60,50,74]). As noted in [112], the expressions for the
expected inventory held and expected number of units short can
be modified for a Poisson demand process. Specifically, given the
demand per unit time is a Poisson process with rate λ, the demand
over τ discrete time units will have Poisson distribution with rate
τλ such that f τðyτÞ ¼ e�τλðτλÞyτ=yτ! (see, e.g., [96,112]).
4. Solution analysis

Two common solution approaches for solving multi-objective
optimization problems are reduction to a single-objective opti-
mization problem (via weighting or min-max deviation methods)
and generation of Pareto efficient solutions. In this study, we use
the latter approach as this gives the decision maker a set of
alternative solutions and illustrates how the objective functions
change with respect to each other. Note that both P1 and P2 are
bi-objective mixed-integer nonlinear programming models. Fur-
thermore, even with one of the objective functions as the single
objective, both P1 and P2 are NP-hard problems. Therefore, we
focus on developing an efficient algorithm to approximate the set
of Pareto efficient solutions for P1 and P2. To do so, we first discuss
an implementation of the well-known adaptive ϵ-constraint
algorithm. After that, we characterize properties of the Pareto
efficient solutions and construct an evolutionary search algorithm
that utilizes these properties.

It should be noted that both the adaptive ϵ-constraint and
evolutionary search algorithms are approximation algorithms as
both P1 and P2 have continuous decision variables. Furthermore,
both of the objective functions are not necessarily convex (see, e.g.,
[23,62] for convexity conditions on the classical (Q,R) model).
Many exact methods have been recently developed for multi-
objective pure integer models. One may refer to the review papers
by Ehrgott and Gandibleux [44,45] and Alves and Climaco [6] and
the book by Ehrgott [43] for reviews of such methods. Also,
Dächert and Klamroth [40] present a substantial review of the
exact methods. On the other hand, in the case of multi-objective
mixed-integer models, the exact methods aim to generate the
exact set of integer parts of the Pareto efficient solutions. Most of
the previous methods for solving multi-objective mixed-integer
models such as branch-and-bound algorithms (see, e.g.,
[93,94,124,13,116]), the triangular splitting method [17,18], and
other methods (see, e.g., [114]) are studied for multi-objective
mixed-integer linear programming models.

In this study, the problems of interest are multi-objective
mixed-integer nonlinear programming models; hence, one can-
not directly apply the current solution methods. In what follows,
we first give some preliminaries, then discuss the implementation
details of the adaptive ϵ-constraint algorithm of Laumanns et al.
[86], and finally, explain the evolutionary search algorithm, which
utilizes properties similar to the ones used in the triangle splitting
method proposed by Boland et al. [18] for mixed-integer-linear
programming models. Throughout the rest of this section, cost and
emission refer to expected costs and expected carbon emissions
per unit time, respectively.

4.1. Preliminaries

Let j¼1 and j¼2 be the indices defining the sequential splitting
and sequential delivery policies, respectively. Furthermore, let PF j

denote the Pareto front, the set of Pareto efficient points, of pro-
blem Pj. We will use the following definition of Pareto efficient
solution.

Definition 1. A feasible solution ðR;q; xÞ is in PFj if and only if
there does not exist another feasible solution ðR;q; xÞ such that
CjðR;q; xÞZCjðR;q; xÞ and EjðR;q; xÞZEjðR;q; xÞ, where at least one
of these inequalities is strict ([15]).

Now, let us define
�
~R
j
; ~q j; ~x j

�
¼ arg\min

n
CjðR;q; xÞ : 0rqi rxi

wi 8 iA I; xiAf0;1g 8 iA I;R40
o

and
�bR j

; bq j
; bx j
�
¼ arg\minfEj ðR;q;

xÞ : 0rqirxiwi 8 iA I; xiAf0;1g 8 iA I;R40g. That is,
�
~R
j
; ~q j; ~x j

�
is

the cost minimizing and
�bR j

; bq j
; bx j
�

is the emission minimizing
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solution of problem Pj. For notational simplicity, let
~C
j ¼ Cj

�
~R
j
; ~q j; ~x j

�
, ~E

j ¼ Ej
�
~R
j
; ~q j; ~x j

�
, bCj ¼ Cj

�bR j
; bq j

; bx j
�
, andbEj ¼ Ej

�bR j
; bq j

; bx j
�
.

Remark 1. If ðR;q; xÞAPFj, then ~C
jrCjðR;q; xÞr bCj

and bEjr
EjðR;q; xÞr ~E

j
.

Remark 1 is a direct implication of Definition 1 and it is a well-
known result (see, e.g., [61]). It directly follows from Remark 1 that�
~R
j
; ~q j; ~x j

�
APFj and

�bRj
; bq j

; bx j
�
APFj. Now, suppose that x is given

and consider the following bi-objective optimization problem:

ðPj jxÞ : min CjðR;qjxÞ
min EjðR;qjxÞ
s:t: 0rqirxiwi 8 iA I

R40;

Let PFjðxÞ be the set of ðR;q; xÞ solutions such that ðR;qÞ is Pareto

efficient to problem Pj jx. Note that PFjðxÞ can be approximated

with the classical ϵ-constraint algorithm [61], which does not need
to be adaptive as Pj jx does not have any integer decision variables.

Appendix A.2 gives the implementation details of the ϵ-constraint
algorithm for approximating PFjðxÞ. Furthermore, let us define�
~R
jðxÞ; ~qjðxÞ

�
¼ arg\min

n
CjðR;qjxÞ : 0rqirxiwi 8 iA I;R40

o
and

�bRjðxÞ;
bq j ðxÞ

�
¼ arg\min

n
CjðR;qjxÞ : 0rqirxiwi 8 iA I;R40

o
. That is,�

~R
jðxÞ; ~q jðxÞ

�
and

�bRjðxÞ; bq jðxÞ
�

are the optimum re-order point

and split orders of Pj jx with only cost (CjðR;qjxÞ) and only

emission (EjðR;qjxÞ) minimization objectives, respectively, given
the supplier selection x under policy j. For notational simpli-

city, let ~C
jðxÞ ¼ Cj

�
~R
jðxÞ; ~q jðxÞ; x

�
, ~E

jðxÞ ¼ Ej
�
~R
jðxÞ; ~q jðxÞ; x

�
, bCjðxÞ ¼

Cj
�bRjðxÞ; bq jðxÞ; x

�
, and bEjðxÞ ¼ Ej

�bRjðxÞ; bq jðxÞ; x
�
.

Remark 2. (i) If ðR;q; xÞAPFjðxÞ, then ~C
jðxÞrCjðR;q;xÞrbC jðxÞ andbEjðxÞrEjðR;q;xÞr ~E

jðxÞ; and (ii) if ðR;q; xÞ=2PFjðxÞ, then

ðR;q; xÞ=2PFj.

Remark 2(i) is defined similar to Remark 1. Remark 2(ii) follows from

Definition 1 and it indicates that PFjD⋃xA ½0;1�nPF
jðxÞ, where ½0;1�n

denotes the set of all binary n-vectors. In fact, it follows from Remark

2(ii) that PFj ¼ PE ⋃xA ½0;1�n PF
jðxÞ

� �
, where PEðΦÞ denotes the set of

Pareto efficient solutions within a given set of ðR;q; xÞ solutions Φ
(see, also, [55] for a similar result). Appendix A.3 states an iterative
procedure to determine PEðΦÞ out of Φ. This further suggests the
following total enumeration approach to approximate PFj: approx-

imate PFjðxÞ for each x (using the classical ϵ-constraint method given

in Appendix A.2) and extract PFj ¼ PE
�
⋃xA ½0;1�nPF

jðxÞ
�

(using the

iterative method given in Appendix A.3). An algorithmic description
of this total enumeration algorithm is given in Appendix A.4. We will
use the total enumeration algorithm as a benchmark for the adaptive
ϵ-constraint and evolutionary search algorithms.

However, one does not need to approximate PFjðxÞ for each
possible xA ½0;1�n in order to approximate PFj. Particularly, let us
define Zj ¼ fx : PFjðxÞ \ PFja∅; xA ½0;1�ng, that is, Zj is the set of
binary supplier selection decision vectors, which produce Pareto
efficient ðR;q;xÞ solutions for problem Pj. It then follows from

Remark 2(ii) that PFj ¼ PE ⋃xAZj PFjðxÞ
� �

. The idea of the adaptive
ϵ-constraint method is to use the cost and emission minimizing
solutions of a xAZj to partially approximate PFjðxÞ, whereas the
evolutionary search algorithm tries to directly determine a good
approximation of Zj without a need to fully approximate PFjðxÞ for
each possible xA ½0;1�n. We will use the following definition within
the algorithms for comparing two sets of solutions S1 and S2.

Definition 2. S1 Pareto dominates S2 if S2 \ PEðS1 [ S2Þ ¼∅ [84].

That is, if all of the solutions within S2 are Pareto dominated by at
least one solution within S1, then S1 Pareto dominates S2, repre-
sented as S1{S2 as we have two minimization objectives. The case
when neither S1 nor S2 Pareto dominates the other is represented
as S1≶S2. Next, we explain the implementation details of the
adaptive ϵ-constraint algorithm.

4.2. Adaptive ϵ-constraint algorithm

Similar to the classical ϵ-constraint algorithm, the main idea of
the adaptive ϵ-constraint algorithm is to move one of the objective
functions to the constraints as an upper bound. In particular, let
ðRjδE ;qjδE ; xjδE Þ ¼ arg\minfCjðR;q;xÞ : EjðR;q; xÞrδE; 0rqirxiwi 8
iA I; xi Af0;1g 8 iA I;R40g and ðRjδC ;qjδC ; xjδC Þ ¼ arg\minfEjðR;q;
xÞ : CjðR;q; xÞrδC ;0rqi rxiwi 8 iA I; xiAf0;1g 8 iA I;R40g.
That is, ðRjδE ;qjδE ; xjδE Þ minimizes the cost such that the emissions
are less than or equal to δE and ðRjδC ;qjδC ; xjδC Þ minimizes the
emissions such that the cost is less than or equal to δC. The next
remark follows from Definition 1 and Remark 1.

Remark 3. (i) If bEjrδEr ~E
j
, then ðRjδE ;qjδE ; xjδE ÞAPFj. (ii) If

~C
jrδCrbCj

, then ðRjδC ;qjδC ; xjδC ÞAPFj.

Remarks 1 and 3 constitute the main framework of the ϵ-constraint

algorithm. In the ϵ-constraint algorithm, starting with δE ¼ ~E
j
(or

δC ¼ bCj
), one iteratively determines solutions in the form of ðRjδE ;

qjδE ; xjδE Þ (or ðRjδC ;qjδC ; xjδC Þ) by reducing δE (or δC) values by ϵ at

each iteration until δE ¼ bEj
(or δC ¼ ~C

j
), where ϵ is a small number.

However, since Pj is a mixed-integer nonlinear programming

model, it is not guaranteed that EjðRjδE ;qjδE ; xjδE Þ ¼ δE (or

CjðRjδC ;qjδC ;xjδC Þ ¼ δC). Therefore, one might end up with the same

ðRjδE ;qjδE ; xjδE Þ (or ðRjδC ;qjδC ; xjδC Þ) for different δE (or δC) values

when ϵ is too small. On the other hand, if ϵ is too large, the
approximation will not be sufficient and might miss a x such that
there exist many Pareto efficient ðR;q; xÞ solutions. To avoid these
drawbacks of the ϵ-constraint algorithm [86], we adaptively select
δE (or δC) and ϵ values considering xjδE (or xjδC ) and Remark 2(i).

In particular, suppose that the ϵ-constraint algorithm is to be
implemented with the cost minimization objective and the emis-
sions constraint. At an intermediate iteration, let us assume that
xjδE axjðδE þϵÞ. In such a case, we first replace δE with EjðRjδE ;qjδE ; xjδE Þ
instead of δE�ϵ. This will prevent consideration of δE values that

would return the same solution. Then, we set ϵ¼ ½δE�bEjðxjδE Þ�=M,
whereM is a predetermined number defining the maximum number
of solutions to generate for a given x. Depending on how large M is,
the adaptive updates of δE and ϵ will avoid missing Pareto efficient
solutions due to large ϵ values and avoid solving unnecessary opti-
mization problems due to small ϵ values.

Using the adaptive ϵ-constraint method with specific objective
and constraint choices might result in an approximation of PFj

with low diversity. To increase the diversity of the approximation,
one can also execute the adaptive ϵ-constraint method by
switching the function choices. Specifically, if the adaptive ϵ-
constraint method is to be implemented with the emission mini-
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mization objective and the cost constraint, we update δC and ϵ as
follows. At an intermediate iteration, suppose that xjðδC þϵÞaxjδC . In
such a case, we first set δC ¼ CjðRjδC ;qjδC ; xjδC Þ. Then, we set

ϵ¼ δ̂C� ~C
jðxjδC Þ

h i
=M.

Appendix A.5 gives the algorithmic description of the adaptive
ϵ-constraint algorithmwith both possible executions for problem Pj

to approximate PFj. We note that one needs to solve mixed-integer
nonlinear programming models to determine ðRjδE ;qjδE ; xjδE Þ and
ðRjδC ;qjδC ; xjδC Þ, and these models are NP-hard; therefore, we devise
a multi-start local search heuristic to solve them. The details of this
multi-start search heuristic are given in Appendix A.6. Furthermore,bEjðxjδE Þ and ~C

jðxjδC Þ should be determined throughout the adaptive
ϵ-constraint algorithm, and, therefore, non-linear programming
models should be solved. To solve any non-linear programming
model required to be solved with the algorithms, we use an interior
point method (see, e.g., [53]). Next, we characterize further prop-
erties of a Pareto efficient solution of Pj and propose an evolu-
tionary search algorithm.

4.3. Properties and evolutionary search algorithm

The evolutionary search algorithm is based on approximating Zj

directly. To do so, we compare different supplier selection vectors
and check which ones can potentially belong to Zj using Properties
1–3. The proofs of Properties 1–3 are given in Appendix A.7.

Property 1. Suppose that x1 and x2 define two supplier selection

decisions such that x1ax2. x2 =2Zj if (i) ~C
jðx1Þr ~C

jðx2ÞrbCjðx1Þ and
~E
jðx1ÞobEjðx2Þ or (ii) bCjðx1Þo ~C

jðx2Þ and bEjðx1ÞrbEjðx2Þ.

Property 1 suggests that if there exists an x1 satisfying the stated
conditions, one should not include x2 within Zj. In particular, the
stated conditions guarantee that PFjðx1Þ Pareto dominates PFjðx2Þ,
i.e., PFjðx1Þ{PFjðx2Þ. Furthermore, it is sufficient to calculate only
the cost and emissions minimizing re-order point and split orders
under the given supplier selection decisions instead of generating
more than two points on PFjðx2Þ. We note that Property 1 gives
sufficient but not necessary conditions for PFjðx1Þ{PFjðx2Þ. The
following property is a direct implication of Property 1.

Property 2. Suppose that S is a set of supplier selection decisions and

x!=2S. x!=2Zj if (i) bEjð x!Þ4minxA Sf ~E
jðxÞ : ~CjðxÞr ~C

jð x!Þ; ~C jð x!ÞrbC j

ðxÞg or (ii) bEjð x!ÞZminxASfbEjðxÞ : bCjðxÞo ~C
jð x!Þg.

While Property 1 compares a given supplier selection decisions
vector to another one, Property 2 compares a given supplier
selection decisions vector to a set of other supplier selection
decisions vectors. Properties 1 and 2 will be both used within
the evolutionary search algorithm to determine supplier selection

decisions, for which we do not need to generate PFjðxÞ. Particu-
larly, the evolutionary search algorithm first approximates Zj and

then gets the PFj approximation as PE ⋃xAZj PFjðxÞ
� �

. Additionally,

even if one cannot state that it is not unnecessary to approximate

PFjðxÞ, it is still important to determine that x=2Zj after approx-

imating PFjðxÞ because doing so would reduce the size of

⋃xAZj PFjðxÞ, and thereby, reduce the computational time to

determine PE ⋃xAZj PFjðxÞ
� �

. Next, we state an intuitive property

that can be used for this purpose.

Property 3. Suppose that PFjðxÞ is given. If ( iA I with ~ai40 or bai

40 such that xi¼1 and qi¼0 8ðR;q; xÞAPFjðxÞ, then x=2Zj.

Property 3 simply notes that the retailer will not use a supplier for
delivery unless the supplier delivers a positive percentage of the
total order quantity. This result is expected as the retailer will
neither pay the fixed delivery charge nor claim the fixed portion of
the carbon emissions due to using a supplier who is not delivering
anything. Therefore, if at least one of the suppliers selected under
x is not needed for each Pareto efficient solution within PFjðxÞ, x
will not produce any Pareto efficient solution within PFj.

At this point, we are ready to propose the evolutionary search
algorithm for problem Pj to approximate PFj. This algorithm uses
4 steps described below: it starts with step (i) and repeats steps (ii)
and (iii) until the criterion defined in step (iv) is satisfied. The
algorithmic description of the evolutionary search algorithm is
given in Appendix A.8.

(i) Chromosome representation and initialization: Note that a
solution for Pj is in the form of ðR;q; xÞ, where R and q are the
continuous variables and x is the vector of binary variables. In the
evolutionary search algorithm, instead of analyzing ðR;q; xÞ, we
focus on analyzing x. Here, x is used as a chromosome. To analyze
x, we will approximate PFjðxÞ with the ϵ-constraint method (see
Appendix A.2) as needed instead of generating PFjðxÞ for every x.
To start the algorithm, α chromosomes are randomly generated as
the initial population.

(ii) Fitness evaluation: The purpose of the fitness evaluation step
is to determine the best chromosomes in a given set of chromo-
somes, i.e., parent chromosomes of a population. Suppose that a
set of ℓ chromosomes, S, is given. We use Properties 2 and 3 to
determine the best chromosomes within population S, denoted by
Sn as follows. First, the chromosomes are sorted such that
~C
jðx1ÞZ ~C

jðx2ÞZ⋯Z ~C
jðxℓÞ. Then, for each chromosome xgAS

such that 1rgrℓ, if bEjðxgÞ4min
n
~E
jðx1Þ; ~Ejðx2Þ;…; ~E

jðxg�1Þ
o
, we

exclude it from S and let S≔S⧹fxgg. Note that the remaining
chromosomes in S will still be sorted in decreasing order of their
~C
jðxÞ values. Without loss of generality, suppose that we have krℓ

chromosomes remaining in S such that ~C
jðx1ÞZ ~C

jðx2ÞZ⋯Z
~C
jðxkÞ. Then, for each chromosome xgAS such that 1rgrℓ, ifbEjðxgÞZmin

n
~E
jðxf Þ : f rg�1; bCjðxf Þo ~C

jðxf Þ
o
, we exclude it from S

and let S≔S⧹fxgg. So far, we have checked the conditions in
Property 2. Finally, for the remaining chromosomes, we generate
PFjðxÞ, and check whether the condition in Property 3 is being
satisfied; if so, we eliminate the chromosome from S. The
remaining chromosomes constitute the set of parent chromo-
somes, Sn, of the initially given population S.

(iii) Mutation operations: Mutation operations are used to
generate the next population using the set of parent chromosomes
of the current population. We use three mutation operations: add-
drop mutation, neighbor mutation, and random mutation. Add-
drop mutation is executed on each gene of each parent chromo-
some such that if xi¼1 (xi¼0) for a given parent chromosome x, a
mutant is generated by making xi¼0 (xi¼1) and not changing
other genes. With add-drop mutation, n mutant chromosomes are
generated from each parent chromosome. Neighbor mutation
generates the neighbors of a parent chromosome such that each
neighbor has the same number of suppliers selected. Specifically,
given a parent chromosome x, its (a,b)-neighbor, denoted by xða;bÞ

such that 1rarn, 1rbrn, aab, exists if xaþxb ¼ 1 and is
defined by swapping xa and xb values. With neighbor mutation, we
generate all neighbors of each parent chromosome. Finally, we
randomly generate a set of β chromosomes. The next population
consists of the parent chromosomes and the newly generated
chromosomes. By including the parent chromosomes of the cur-
rent population within the next population, it is guaranteed that
the populations are not worsening. Also, by keeping a list of the
chromosomes evaluated, we exclude already evaluated chromo-
somes (other than the parent chromosomes) from the population.
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This avoids evaluating a chromosome twice and assures that we
generate PFjðxÞ for a chromosome x at most once.

(iv) Termination: We terminate generating new populations if
the set of parent chromosomes is not changing over a pre-
specified number (γ) of consecutive populations. At termination,
let Sn be the set of parent chromosomes. Then, based on Property
2, PFj is approximated as PE

�
⋃xAS�PF

jðxÞ
�
.

5. Numerical studies

This section focuses on three sets of numerical analysis:
(i) efficiency of the proposed algorithms with each delivery
scheduling policy, (ii) effects of the demand variance on the
retailer's expected costs and carbon emissions under each delivery
scheduling policy, and (iii) comparison of the delivery scheduling
policies. In these analyses, we use similar data ranges to those of
Schaefer and Konur [109]. Refer to Appendix A.9 for the details of
the parameter ranges used for problem instance generation as well
as the parameter specifications for the algorithms. The algorithms
are coded in Matlab 2014 and executed on a personal computer
with 3 GHz dual-core processor and 16 GB RAM. Tables of analyses
(i) and (ii) are presented in Appendix A.10.

5.1. Efficiency of the algorithms

Here, we compare the adaptive ϵ-constraint algorithm (AE)
with the evolutionary search algorithm (ES) under each delivery
scheduling policy. In comparing AE and ES, we use the total enu-
meration algorithm (TE) as a benchmark. In particular, we ran-
domly generate 10 problem instances with the number of sup-
pliers n increasing from 3 to 10 in increments of 1 and we solve
each problem instance under each delivery scheduling policy
using each algorithm (i.e., 80 problem instances are generated and
a problem instance is solved 6 times) and then, we compare the
set of unique x's within the solutions returned by each algorithm,
denoted by ZjTE, ZjAE, and ZjES for the TE, AE, and ES algorithms,
respectively, under delivery scheduling policy j. For comparison,
we use the following statistics for each algorithm: the number of
unique x's, i.e., Zj

TE







 , Zj
AE







 , and Zj
ES







 , and computational time in
seconds (cpu). Furthermore, for AE, we calculate the percentage of
the solutions in ZjAE which are also in ZjTE, i.e., Zj

TE \ Zj
AE Zj

AE







.






(denoted by AE \ TE) and the percentage of the solutions in ZjAE
which are also in ZjES, i.e., Zj

ES \ Zj
AE Zj

AE







.





 (denoted by AE \ ES).
Similarly, for ES, we calculate the percentage of the solutions in ZjES
which are also in ZjTE, i.e., Zj

TE \ Zj
ES Zj

ES







.





 (denoted by ES \ TE)
and the percentage of the solutions in ZjES which are also in ZjAE, i.e.,
Zj
AE \ Zj

ES Zj
ES







.





 (denoted by ES \ AE). Tables 2 and 3 in Appendix

A.10 present the averages of these statistics over the 10 problem
instances solved for each n for sequential splitting and sequential
delivery, respectively. We have the following observations based
on Tables 2 and 3:

� ES is much faster than AE, with the relative speed advantage
increasing with the number of suppliers n. As expected, TE
required more computational time than the other two algo-
rithms for every instance and it did find more solutions.

� Compared with TE, ES was able to find more common solutions
than AE did under each delivery scheduling policy on average,
and furthermore, ES returned more solutions than AE. On
average, ES was able to find 97.3% and 96.1% of the solutions
returned by AE under sequential splitting and sequential
delivery, respectively, while AE was able find 91.5% and 92.2% of
the solutions returned by ES under sequential splitting and
sequential delivery, respectively.

� On average, sequential splitting requires less computational
time than sequential delivery (with all algorithms) and this
advantage increases with the number of suppliers.

While the total enumeration algorithm gives the best approx-
imation for both PF1 and PF2, it is computationally burdensome
and its computational time increases drastically with the problem
size n. Based on the above observations, it can be concluded that
the evolutionary search algorithm is a better approximation
method than the adaptive ϵ-constraint algorithm for both PF1 and
PF2 as it is able to find more common solutions with TE in less
computational time. Therefore, the evolutionary search algorithm
can be considered as an efficient approximation algorithm for
practical problem sizes and we use it as a solution tool to analyze
the effects of demand variance.

5.2. Effects of the demand variance

In this analysis, our goal is to demonstrate the effects of the
demand variance on the retailer's expected costs and carbon
emissions per unit time under each delivery scheduling policy as
well as how PF1 compares to PF2 as υ increases. To do so, we
randomly generate 10 problem instances for each number of
suppliers nAf3;5;7;9g and we solve each problem instance with
8 different values of the standard deviation of the demand rate, υ,
increasing from 200 to 1600 in increments of 200 (i.e., 40 problem
instances are generated and a problem instance is solved 8 times)
under both delivery scheduling policies using the ES algorithm.

To demonstrate the effects of the increase in υ under each
delivery scheduling policy, we calculate the mean of the costs and
emissions of the solutions within the approximated Pareto front of a
problem instance under each delivery scheduling policy for a given
υ. We refer to this average point of a given Pareto front, PFj, as the
mean-Pareto-solution with costs defined by C

j ¼PðR;q;xÞAPFjC
jðR;q;

xÞ=jPFj j and emissions defined by E
j ¼PðR;q;xÞAPFj E

jðR;q; xÞ=jPFj j .
Table 4 in Appendix A.10 documents the averages of C

j
and E

j

values over the 40 problem instances solved with each υ for
sequential splitting and sequential delivery and Fig. 2a illustrates
these averages (Table 5 in Appendix A.10 reports more details with
the averages of C

j
and E

j
values over the 10 problem instances

solved with each n and υ for sequential splitting and sequential
delivery). As expected, it can be observed from Table 4 and seen in
Fig. 2a that both C

j
and E

j
increase as υ increases under both

delivery scheduling policies. This result generalizes the observations
of Schaefer and Konur [109] on the effects of demand variability to
the case with multiple suppliers and different scheduling policies.
Furthermore, recalling the alternative models defined in Section 3.3
with BjðR;q;xÞ ¼ CjðR;q; xÞþψ EjðR;q; xÞ�Φ

� �
, it can also be argued

that the total cost (including environmental costs or tax or trading
costs/revenues) will increase with υ.

Table 4 also provides the averages of the percent differences
between C

1
and C

2
and between E

1
and E

2
, where ΔC ¼ ðC2�C

1Þ=C2

and ΔE¼
�
E
2�E

1
�
=E

2
. That is, ΔC and ΔE measure the savings in

costs and emissions, respectively, due to switching from sequential
delivery to sequential splitting. Fig. 2b shows the averages ΔC and
ΔE, as well as ΔCþΔE solved with each υ. We have the following
observations based on Table 4 and Fig. 2b. For lower υ values
(υr800), ΔC and ΔE do not follow a strictly increasing or
decreasing trend; however, the total change (ΔCþΔE) is slightly
negative, i.e., sequential delivery can be slightly more preferable. On
the other hand, for higher υ values (υ4800), ΔC and ΔE (and thus
ΔCþΔE) increase as υ increases and the total change is positive.



Fig. 2. Illustration of the effects of increases in υ.
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That is, for higher υ values, sequential splitting is more preferable
and its advantage over sequential delivery increases with υ.

To further demonstrate the effects of the increase in υ on compar-
ison of the delivery scheduling policies, we first compare PF1 and PF2 to
PF ¼ PEðPF1 [ PF2Þ over the problem instances solved with different υ
values. For comparing PF1 and PF2 to PF, we look at the following three
percentages: the percentage of solutions in PF coming from both PF1

and PF2, denoted by Ψ0 such that Ψ 0 ¼ jPF \ PF1 \ PF2 j=jPF j , the
percentage of solutions in PF coming only from PF1, denoted byΨ1 such
thatΨ 1 ¼ jPF \ PF1 j=jPF j �Ψ 0, and the percentage of solutions in PF
coming only from PF2, denoted by Ψ2 such that
Ψ 2 ¼ jPF \ PF2 j=jPF j �Ψ 0. Table 6 in Appendix A.10 summarizes the
averages ofΨ0,Ψ1, andΨ2 values over the 10 problem instances solved
with each n and υ and Fig. 2c illustrates the averages of theΨ0,Ψ1, and
Ψ2 over the 40 problem instances solved with each υ. Furthermore, we
compare the percentage of the problem instances where PF1{PF2

(denoted by Ω1), PF
2{PF1 (denoted by Ω2), and PF1 � PF1 (denoted

by Ω0). Note that 100%�Ω1�Ω2�Ω0 defines the percentage of the
problem instances where PF1≶PF2. Table 7 in Appendix A.10 sum-
marizes the averages of Ω0, Ω1, and Ω2 values over the 10 problem
instances solved with each n and υ and Fig. 2d illustrates their averages
over the 40 problem instances solved with each υ.

Table 6 and Fig. 2c show that as υ increases, Ψ1 tends to
increase while Ψ0 and Ψ2 tend to decrease. This suggests that the
retailer might change his/her delivery scheduling policy and
sequential splitting might become more preferable as υ increases.
In particular, since Ψ1 tends to increase with υ, it means that the
sequential splitting returns more solutions that are Pareto superior
compared to the solutions returned with sequential delivery when
the demand variance is higher. That is, the retailer can find more
solutions with lower cost (emissions) under sequential splitting
compared to the solutions with the same emissions (cost) levels
under sequential delivery. Furthermore, it can be observed from
Table 7 and Fig. 2d that the percentage of the problem instances
where PF1{PF2 tends to increase while the percentage of the
problem instances where PF2{PF1 tends to decrease as υ
increases. This suggests that sequential splitting dominates
sequential delivery for more problem instances as υ increases.
Based on these observations and the previous observations from
Table 4 and Fig. 2b, we can note that a retailer that observes
increases in demand variance should consider switching from
sequential delivery to sequential splitting. However, we recom-
mend the use of tools provided here (as will be done next in
Examples 1–3) for comparing PF1 and PF2.

5.3. Comparison of the scheduling policies

This section focuses on comparing sequential splitting and
sequential delivery. Note that a retailer that wishes to purely
minimize cost (emissions) would find the cost (emissions) mini-
mizing solutions under each delivery scheduling policy, and then
select the one which has lower value. On the other hand, a retailer
that has both cost and emissions minimization objectives will
need to compare the Pareto fronts under each scheduling policy,
i.e., PF1 and PF2. Particularly, a retailer that has adopted a specific
scheduling policy can select a solution from the corresponding
Pareto front considering their economic as well as environmental
targets. Nevertheless, if the retailer wishes to select a scheduling
policy and then a solution under that policy considering their
economic and environmental targets, then PF1 and PF2 should be
compared. To do so, Definition 2 can be used.

Note that if PF1{PF2 (PF2{PF1), the retailer will prefer
sequential splitting (sequential delivery) independent of their
economic and environmental targets. On the other hand, if
PF1≶PF2, the retailer's delivery scheduling policy choice will
depend on their economic and environmental targets. The next
three examples illustrate that each of the following three cases is
possible: PF1{PF2 (in Example 1), PF1≶PF2 (in Example 2), and
PF2{PF1 (in Example 3). Prior to discussing the implications of
these examples, it is worthwhile to note that PF1ðxÞ � PF2ðxÞ if



Fig. 3. Illustration of the Pareto fronts under delivery scheduling policies for
Example 1.

Fig. 4. Illustration of the Pareto fronts under delivery scheduling policies for
Example 2.
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P
iA Ixi ¼ 1. Thus, if Z1 ¼ Z2 ¼ Z and Z consists of supplier selection

decisions only with one supplier, then PF1 � PF2.
The settings of the examples are as follows. Consider a retailer

with the following parameters: normally distributed annual
demand with λ¼ 3000, υ¼ 500, and cost parameters such that
~h ¼ 0:1=unit=year, ~p ¼ 15, ~c ¼ 1, and ~A ¼ 20, and emission para-
meters such that bh ¼ 0:5=unit=year, bp ¼ 10, bc ¼ 1, and bA ¼ 15.
Consider that there are four suppliers available with the char-
acteristics as noted below.
Supplier
 ~ei
 bei
 ~ai
 bai
 τi
 wi
1
 0.5
 1.1
 9
 12
 0.02
 50

2
 0.6
 1.3
 12
 14
 0.07
 60
Fig. 5. Illustration of the Pareto fronts under delivery scheduling policies for
3
 0.55
 1.2
 11
 17
 0.03
 40

Example 3.
4
 0.65
 1.4
 10
 13
 0.01
 70
In Example 1, the retailer can use only Suppliers 1 and 2 for
delivery. Fig. 3 illustrates PF1 and PF2 and shows that PF1{PF2 even
if Z1 ¼ Z2 ¼ f½1;1�g; therefore, the retailer will prefer sequential
splitting independent of their cost and/or emission targets.

In Example 2, the retailer can use only Suppliers 1, 2 and 3 for
delivery. Fig. 4 shows PF1 and PF2, and while Z1 ¼ Z2 ¼
f½1;1;0�; ½1;1;1�g, PF1≶PF2. Specifically, if the retailer sets a low cost
target (o5800), then they would prefer sequential delivery as that
results in lower emissions for low cost solutions. Also, observe that
all three suppliers are used and PF2ð½1;1;1�Þ{PF1ð½1;1;1�Þ. How-
ever, if the retailer sets a low emissions target (o � 8015), then
they would prefer sequential splitting with only Suppliers 1 and 2,
as sequential splitting results in lower cost for low emission
solutions (observe that PF1ð½1;1;0�Þ{PF2ð½1;1;0�Þ). Note how the
two curved parts of the Pareto front in Fig. 4 correspond to dif-
ferent supplier selections with the removal of Supplier 3 in the
lower right, which allows lower emissions, but at greater costs.

Finally, in Example 3, the retailer can use all four suppliers for
delivery. In this case, as can be observed from Fig. 5, PF2{PF1, and
therefore the retailer will prefer sequential delivery independent
of their cost and/or carbon emissions targets. Specifically, the
retailer can always find a solution under sequential delivery with a
lower emission and/or cost level compared to sequential splitting
(observe that PF2ð½1;1;1;1�Þ [ PF2ð½1;1;0;1�Þ{PF1ð½1;1;1;1�Þ [
PF1ð½1;1;0;1�Þ and PF2ð½1;0;0;1�Þ{PF1ð½1;0;0;1�Þ). Furthermore, it
is possible to achieve some specific cost and emissions targets only
under sequential delivery (see PF2ð½1;0;1;1�Þ. Also note how
moving along the Pareto front from upper left to lower right in
Fig. 5 corresponds to removing suppliers, with the midsection
corresponding to different supplier choices for sequential delivery
and sequential splitting. This highlights the complex interactions
between delivery scheduling policy and supplier selection deci-
sions with multiple objectives.

In Appendix A.11, we present the results for Examples 1–3
when the daily demand has a gamma distribution. This shows that
sequential splitting dominates in Examples 1 and 2, but either
policy may be the best in Example 3, depending on the retailer's
cost and emissions preferences.

It is clear from these examples that the delivery scheduling
policy has significant effects on the economic and environmental
performance of an inventory control system. Therefore, the models
presented in this study will help decision makers to evaluate not
only the costs but also the emissions of inventory related activities
and supplier selection decisions. Furthermore, the above examples
also demonstrate that a good approximation of the Pareto fronts is
crucial for accurately comparing alternative delivery scheduling
policies. The methods proposed in this study provide effective
decision support tools for such comparative analysis. Finally, it is
worthwhile to note that when environmental costs or regulations
such as tax and cap-and-trade are considered instead of environ-
mental objectives as discussed in the alternative models presented
in Section 3.3, it is possible that sequential splitting is preferable
over sequential delivery or vice versa.
6. Conclusions and future research

This paper studies an integrated stochastic inventory control,
supplier selection, and order splitting problem under two different
delivery scheduling policies with environmental considerations.
We formulate and analyze a continuous review inventory control
model with order splitting allowed among an arbitrary number of
heterogeneous suppliers and with two objectives (cost and emis-
sion minimizations) under sequential splitting and sequential
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delivery policies. The resulting models contribute to (i) the lit-
erature on environmental inventory control models by studying
continuous review inventory control models with order splitting
and environmental objectives and (ii) the literature on inventory
control models with order splitting by comparing different deliv-
ery scheduling policies in terms of economic as well as environ-
mental performance.

The resulting models are bi-objective mixed-integer nonlinear
programming problems, for which there is a limited number of
studies proposing exact methods to generate the Pareto fronts. Upon
investigating the basic properties of Pareto efficient solutions, we
first discuss an implementation of the adaptive ϵ-constraint method.
Then, further properties, which extend the results for multi-objective
mixed-integer linear programming problems, are used within an
evolutionary search algorithm. Our numerical studies indicate that
the evolutionary search algorithm is efficient compared to the
adaptive ϵ-constraint algorithm. Another contribution of this study
is, therefore, in providing some characteristics of bi-objective mixed-
integer nonlinear programming problems.

Finally, the use of the models and the tools presented are
demonstrated with numerical analyses. First, we illustrate the
effects of demand variability on the costs and carbon emissions
under each delivery scheduling policy. As expected, both costs and
carbon emissions tend to increase as demand variance increases.
In addition, we note that sequential splitting can become more
preferable in case of high demand variance. Then, we show with
three sample scenarios that a retailer's delivery scheduling policy
can be either independent of, or dependent on, their cost and/or
emissions targets.

One of the future research directions is to analyze similar
models with stochastic delivery lead times. Furthermore, the lit-
erature review reveals that there are a limited number of studies
that investigate multi-item inventory control systems with envir-
onmental considerations. Economic and environmental analyses of
multi-item/multi-echelon inventory systems subject to determi-
nistic and stochastic demand under different delivery scheduling
policies remain as future research questions. The models in such
studies will correspond to multi-objective mixed-integer non-
linear programming problems, which lack detailed research.
Another important future direction is, therefore, to investigate
further properties of the multi-objective mixed-integer nonlinear
programming problems.
Fig. 6. Average inventory vs. tim
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Appendix A

A.1. Illustration of inventory calculation for sequential delivery

Here, we demonstrate how to calculate the total expected
inventory held per cycle under sequential delivery with three
selected suppliers such that τ1oτ2oτ3. Fig. 6 illustrates the
average inventory over time. A1, A2, A3, and A4 are the areas under
each right-trapezoid. The area calculation for each trapezoid is
given under the figure. The expression after the first ¼ sign is for
any demand distribution (as in Section 3.3), while the expression
after the second ¼ sign is for normal demand distribution. The
total expected inventory held per cycle under sequential delivery
is found by summing the areas of the trapezoids.

A.2. ϵ-constraint algorithm for Pj jx

Here, we give the algorithmic description of the classical ϵ-
constraint algorithm for problem Pj jx. Recall that

�
~R
jðxÞ; ~q jðxÞ

�
¼

arg\min
n
CjðR;qjxÞ : 0rqirxiwi 8 iA I;R40

o
,
�bRjðxÞ; bqjðxÞ

�
¼ arg\

min
n
CjðR;qjxÞ : 0rqirxiwi 8 iA I;R40

o
, ~C

jðxÞ ¼ Cj
�
~R
jðxÞ; ~q jðxÞ;xÞ,

~E
jðxÞ ¼ Ejð ~RjðxÞ; ~q jðxÞ; x

�
, bCjðxÞ ¼ Cj

�bRjðxÞ; bq jðxÞ; x
�
, and bEjðxÞ ¼

Ej
�bRjðxÞ; bq jðxÞ; x

�
.

e und
onstraint algorithm for Pj jx: � �

p 1: G
er se
iven M and x, set PFjðxÞ ¼ ð ~RjðxÞ; ~q jðxÞÞ; ðbRjðxÞ; bq jðxÞÞ
j j
p 2: S
et δE ¼ ~E
jðxÞ, ϵE ¼ ð ~EjðxÞ�bE ðxÞÞ=M, δC ¼ bC ðxÞ, and

ϵC ¼ bC jðxÞ� ~C
jðxÞ

� 	
=M
p 3: L
et δE≔δE�ϵE and δC≔δC�ϵC

p 4:
quential delivery.
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Determine ðRC ;qCÞ ¼ argminfCjðR;qjxÞ : EjðR;qjxÞ
rδE ;0rqirxiwi 8 iA I;R40g
Ste
p 5: D

Ste
etermine ðRE;qEÞ ¼ argminfEjðR;qjxÞ : CjðR;qjxÞ
rδC ;0rqirxiwi 8 iA I;R40g
p 6: S
et PFjðxÞ≔PFjðxÞ [ fðRC ;qCÞ; ðRE ;qEÞg
j
 Ste
p 7: I
Ste
f δE4bE ðxÞ and δC4 ~C
jðxÞ, go to Step 3; else, return

PFjðxÞ.
To increase the diversity of PFjðxÞ, the above ϵ-constraint
algorithm is executed with both possibilities: cost minimization
and emissions constraint, and emissions minimization and cost
constraint. Note that it will generate 2Mþ2 solutions. In deter-

mining ~R
jðxÞ; ~q jðxÞ

� �
, bRjðxÞ; bq jðxÞ
� 	

, ðRC ;qCÞ, and ðRE;qEÞ, the

interior-point-method is used as one needs to solve nonlinear
optimization models with continuous variables only.

A.3. Iterative procedure to determine PEðΦÞ

Here, we give the algorithmic description of an iterative
method to determine PEðΦÞ, where Φ¼ fðR;q; xÞ1; ðR;q; xÞ2;…;
ðR;q; xÞℓg. Similar procedures are given in the literature (see, e.g.,
[82,80,81]). For notational simplicity, let Cj

o ¼ CjððR;q; xÞoÞ and Ejo
¼ EjððR;q; xÞoÞ for 1rorℓ.
rative procedure to determine PEðΦÞ
e
tep 1: S
et o¼1

p 2: W
hile or jΦj �1

p 3: S
et w¼ ℓþ1
Mu
p 4: W
hile wr jS j

Ste
p 5: If
 Cj

o ¼ Cj
w and Ejo ¼ Ejw, set w¼wþ1
Ste
p 6: E
lse if Cj
orCj

w and EjorEjw, set Φ ≔Φ⧹fðR;q;xÞwg

Ste
p 7: E

Ste
lse if Cj
oZCj

w and EjoZEjw, set Φ ≔Φ⧹fðR;q;xÞog,
o¼ o�1, w¼ jΦj þ1
Ste
p 8: E
nd

Ste
p 9: S
et o¼ oþ1
p 10: E
nd

p 11: R
eturn PEðΦÞ ¼Φ.
Ste

Ste
Ste

Ste
Ste

A.4. Total enumeration algorithm for PF j

The algorithmic description of the total enumeration
algorithm to approximate PFj is as follows:
al enumeration algorithm for Pj:

Ste
p 1: L
et L¼ ½0;1�n and Φ¼∅

Ste
p 2: P
ick a xAL and generate approximated PFjðxÞ

Ste
p 3: S
et L ≔ L⧹fxg and Φ≔Φ [ PFjðxÞ
p 4: If
 La∅, go to Step 2; else, go to Step 5

p 5: R
eturn PFj ¼ PEðϕÞ.
Ste

A.5. Adaptive ϵ� constraint algorithm for Pj

Below, we present the algorithmic description of the adaptive
ϵ-constraint algorithm with both possible executions for problem
Pj to approximate PFj.
aptive ϵ-constraint algorithm for Pj:

p 1: S
et PFj ¼∅, δE ¼1, x¼ 0, and ϵ¼ 0

j

p 2: If
 δEZbE , determine ðRjδE ;qjδE ;xjδE Þ and set

PFj≔PFj [ ðRjδE ;qjδE ; xjδE Þ
p 3: If
 xjδE ax, set δE ≔ EjðRjδE ;qjδE ; xjδE Þ, ϵ≔
h
δE�bEjðxjδE Þ

i
=M,
p 4: S
et δE≔δE�ϵ and go to Step 2

p 5: E
lse, set δC ¼1, x¼ 0, and ϵ¼ 0

p 6: If
 δCZ ~C

j
, determine ðRjδC ;qjδC ; xjδC Þ and set

PFj≔PFj [ ðRjδC ;qjδC ; xjδC Þ h i

p 7: If
 xjδC ax, set δC≔CjðRjδC ;qjδC ; xjδC Þ, ϵ≔ δC� ~C

jðxjδC Þ =M,
p 8: S
et δE≔δE�ϵ and go to Step 6

p 9: E
lse, return PF j and Zj ¼ fx : ( ðR;q; xÞAPFjg.
Ste

Steps 1–5 are the execution of the adaptive ϵ-constraint algorithm
with the cost minimization objective and Steps 5–9 are the
execution of the adaptive ϵ-constraint algorithm with the emis-
sions minimization objective.

A.6. Multi-start search heuristic

Here we give the details of the multi-start search heuristic for
determining ðRjδE ;qjδE ; xjδE Þ ¼ arg\minfCjðR;q;xÞ : EjðR;q; xÞrδE ;0r
qirxiwi 8 iA I; xiAf0;1g 8 i A I;R40g (the details are similar for
determining ðRjδC ;qjδC ;xjδC Þ ¼ arg\minfEjðR;q; xÞ : CjðR;q;xÞrδC ;0r
qirxiwi 8 iA I; xi Af0;1g 8 iA I;R40g). In particular, given a
starting solution, the search heuristic continuously moves to a better
neighbor if one exists. If it cannot find a better neighbor, the searchwith
the current starting solution terminates. Repeating this with multiple
starting solutions, the final solution returned is the best out of the
solutions achieved with the neighbor search. Let us define ðRjδE ðxÞ;qjδE

ðxÞÞ ¼ arg\minfCjðR;qjxÞ : EjðR;qjxÞrδE; 0rqirxiwi 8 iA I;R40g
as determined by the interior-point-method. Below, we give the algo-
rithmic description of the multi-start search heuristic.
lti-start search heuristic for ðRjδE ;qjδE ; xjδE Þ

p 1: G
iven δE and starting solutions x1; x2;…; xℓ, set BN ¼∅

p 2: F
or o¼ 1 : ℓ

p 3: L
et x¼ xo
p 4: G
iven x, set N¼∅ and determine ðRjδE ðxÞ;qjδE ðxÞÞ

p 5: F
or i¼ 1 : n

p 6: L
et xðiÞ ¼ x, set xðiÞ

i ¼ 1�xi, and determine

ðRjδE ðxðiÞÞ;qjδE ðxðiÞÞÞ

p 7: If
 ðRjδE ðxðiÞÞ;qjδE ðxðiÞÞÞ exists,

N≔N [ fðRjδE ðxðiÞÞ;qjδE ðxðiÞÞ; xðiÞÞg

p 8: E
nd !

p 9: D
etermine ð R ; q!; x!Þ¼ arg\minfCjðR;q;xÞ : ðR;q; xÞANg

!

p 10: I
f CjðRjδE ðxÞ;qjδE ðxÞ; xÞZCjð R ; q!; x!Þ, set

x¼ x! and go to Step 4
!

p 11: E
lse, BN≔BN [ fð R ; q!; x!Þg

p 12: E
nd

p 13: R
eturn ðRjδE ;qjδE ;xjδE Þ ¼ arg\minfCjðR;q; xÞ :

ðR;q; xÞABNg
A.7. Proofs of Properties 1–3
Proof of Property 1: Given x1 and x2 are two feasible supplier
selection decisions such that x1ax2, consider a solution

ðR;q; x2ÞAPFjðx2Þ. From Property 2, we know that (i) ~C
jðx2ÞrCjðR;

q; x2ÞrbC jðx2Þ and (ii) bEjðx2ÞrEjðR;q; x2Þr ~E
jðx2Þ. Now, suppose

that (iii) ~C
jðx1Þr ~C

jðx2Þr bCjðx1Þ and (iv) ~E
jðx1ÞobEjðx2Þ and consider

ð ~Rjðx1Þ; ~q jðx1Þ; x1Þ. Recall that ~C
jðx1Þ ¼ Cjð ~Rjðx1Þ; ~q jðx1Þ; x1Þ and ~E

jðx1Þ
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¼ Ej ~R
jðx1Þ; ~q jðx1Þ;x1

� �
by definition. It then follows that Cjð ~Rjðx1Þ;

~q jðx1Þ; x1ÞrCjðR;q; x2Þ from (i) and (iii) and Ej ~R
jðx1Þ; ~q jðx1Þ; x1

� �
o

Ej ðR;q;x2Þ from (ii) and (iv). Therefore, any ðR;q;x2ÞAPFjðx2Þ is not
Pareto efficient by Definition 1; hence, ðR;q; x2Þ=2PFj
8ðR;q; x2ÞAPFjðx2Þ, which means that x2 =2Zj. Now, suppose that (v)bCjðx1Þo ~C

jðx2Þ and (vi) bEjðx1ÞrbEjðx2Þ and consider bRjðx1Þ; bqjðx1Þ; x1
� 	

.

Recall that bC jðx1Þ ¼ Cj bRjðx1Þ; bqjðx1Þ; x1
� 	

, and bEjðx1Þ ¼ Ej bRjðx1Þ; bq jðx1Þ;
�

x1Þ by definition. It then follows that Cj bRjðx1Þ; bq jðx1Þ; x1
� 	

oCjðR;q;

x2Þ from (i) and (v) and EjðbRjðx1Þ; bq jðx1Þ; x1ÞrEjðR;q; x2Þ from (ii)

and (vi). Therefore, any ðR;q; x2ÞAPFjðx2Þ is not Pareto efficient by

Definition 1; hence, ðR;q; x2Þ=2PFj 8ðR;q; x2ÞAPFjðx2Þ, which means

that x2 =2Zj. □

Proof of Property 2: Suppose that S is a set of x's and x!=2S. Consider
that bEjð x!Þ4minxASf ~E

jðxÞ : ~C jðxÞr ~C
jð x!Þ; ~Cjð x!ÞrbCjðxÞg and let

x0 ¼ arg\minxA Sf ~E
jðxÞ : ~C jðxÞr ~C

jð x!Þ; ~C jð x!ÞrbCjðxÞg. These imply

that ~C
jðx0Þr ~C

jð x!ÞrbCjðx0Þ and ~E
jðx0ÞobEjð x!Þ. It then follows from

Property 1 that x!=2Zj. Now, consider that bEjð x!ÞZmin
xAZ

j

bEjðxÞ : bCjðxÞo ~C
jð x!Þ

� �
and let x″¼ arg\min

xAZ
j
bEjðxÞ : bC jðxÞo

�
~C
jð x!Þg. These imply that bCjðx″Þo ~C

jð x!Þ and bEjðx″ÞrbEjð x!Þ. It then
follows from Property 1 that x!=2Zj. □

Proof of Property 3: Suppose that ðR;q; xÞAPFjðxÞ is such that
xi¼1 and qi¼0 for a supplier iA I such that ~ai40 or bai40. Now,
consider the solution ðR;q;xÞ such that R ¼ R, q¼ q, and xj ¼ xj
8 ja i; jA I and xi ¼ 0. Since ðR;q;xÞ is feasible, it follows that
ðR;q; xÞ is also feasible. Furthermore, since ~ai40 or bai40, we

have either CjðR;q;xÞ4CjðR;q; xÞ and EjðR;q; xÞZEjðR;q; xÞ or Cjð
R;q; xÞZCjðR;q; xÞ and EjðR;q; xÞ4EjðR;q; xÞ. Therefore, it follows

from Definition 1 that ðR;q; xÞ=2PFj. Then, if this is the case

8ðR;q; xÞAPFjðxÞ, then PFjðxÞ \ PFj ¼∅; hence, x=2Zj by definition
of Zj. □

A.8. Evolutionary search algorithm to approximate PF j

The algorithmic description of the evolutionary search algo-
rithm to approximate PFj is stated below:
Ev
Ste

Table 2
Compariso

n

3
4
5
6
7
8
9
10
avg.
olutionary search algorithm for Pj:

p 1: G
iven α, β, γ, randomly generate S with α

chromosomes, set S0 ¼∅, and ψ ¼ 0
n of the algorithms for sequential splitting.

TE AE

jZ1
TE j cpu jZ1

AE j cpu AE \ TE (%) AE

2.3 2.1 2.2 1.2 98.0 98
2.6 5.3 2.5 2.5 96.7 96
3.9 13.0 3.6 9.0 94.6 96
3.7 31.6 3.4 16.7 89.0 92
4.3 70.4 3.9 43.3 86.3 89
3.7 180.8 2.9 52.2 82.9 85
3.4 402.7 2.8 68.0 83.1 88
4.1 967.1 3.5 162.8 80.2 86
3.5 209.1 3.1 44.5 88.8 91.
p 2: If
\ ES

.0

.7

.0

.3

.7

.0

.5

.2
5

ψrγ

p 3: G
iven S, determine Sn using fitness evaluation

operations

p 4: If
 S0 � S�, set ψ≔ψþ1

p 5: E
lse set ψ≔0 and S0≔S�
p 6: G
iven Sn, generate a new S using mutation operations
and go to Step 2
p 7: E
lse, return PFj ¼ PEð⋃xA S�PF
jðxÞÞ and

Zj ¼ fx : ( ðR;q; xÞAPFjg.
A.9. Details of the problem settings

The settings of the problem instances are defined similar to Schaefer
and Konur [109]. In particular, we let λ¼ 2000 units and ϑ¼ 100 in all
problem instances. Furthermore, it is assumed that ~c ¼ bc ¼ 1 as
expected costs and carbon emissions per unit time do not depend on
the retailer's decision variables. The retailer's other cost and emissions
parameters are generated from uniform distributions with the follow-
ing ranges: ~h � ½2;8�, bh � ½5;10�, ~p � ½2;8�, bp � ½5;10�, ~A � ½50;150�,bA � ½50;100�. Similar parameter values are defined in environmental
inventory control models (see, e.g., [69,29,120,79,83]).

Supplier parameters are generated as follows. We use the fol-
lowing uniform distribution ranges for delivery lead times, capa-
cities, and fixed delivery costs: τi � ½0:1;0:5�, wi � ½100;200�
(rounded to the closest multiplier of 10 for practical purposes), and
~ai � ½100;250�. We generate the other supplier costs and supplier
emissions parameters as follows. First, we randomly generate a
distance, g, such that g �U½100;500�. Then, ~eEi is generated
assuming ~eEi �U½0:005;0:015�. Here, ~eEi is the per mile transpor-
tation cost of supplier i's empty vehicle. Then, ~eFi ¼ β ~eEi , where beta
is the empty-to-full ratio for a vehicle and it is generated assuming
β� U½0:2;0:8�. Here, ~eFi =wi represents the per mile per unit
transportation cost of supplier i. Then, ~ei ¼ g ~eEi þ ~eFi =wi

� �
. bei is

generated similarly by letting beEi �U½1;1:5� and we let bai ¼ gbeEi .
In the ϵ-constraint algorithm given in Appendix A.2, which is

used in the TE, AE, and ES algorithms, we set M¼4; thus, 10 Pareto
efficient solutions are targeted to be generated for a given x. In the
multi-start search heuristic given in Appendix A.6, which is used
within the AE algorithm, and initialization of the ES algorithm, we
generate 2n starting solutions. That is ℓ¼ 2n in the multi-start
search heuristic and α¼ 2n in the ES algorithm. Furthermore, in
mutation operations of the ES algorithm, 2n chromosomes are
randomly generated, i.e., β¼ 2n. Finally, we set γ ¼ n as the ter-
mination criteria in ES.

A.10. Tables of Sections 5.1 and 5.2

See Tables 2–7.
ES

(%) jZ1
ES j cpu ES \ TE (%) ES \ AE (%)

2.3 1.2 100.0 100.0
2.6 2.1 100.0 100.0
3.8 4.2 98.6 100.0
3.6 5.7 96.7 96.7
4.2 10.7 96.7 97.1
3.4 14.3 97.9 95.0
3.2 18.3 94.7 95.8
3.8 29.6 94.0 93.6
3.4 10.8 97.3 97.3



Table 3
Comparison of the algorithms for sequential delivery.

n TE AE ES

jZ2
TE j cpu jZ2

AE j cpu AE \ TE (%) AE \ ES (%) jZ2
ES j cpu ES \ TE (%) ES \ AE (%)

3 2.4 2.5 2.4 1.8 100.0 100.0 2.4 1.5 100.0 100.0
4 2.6 6.8 2.3 2.9 92.2 92.2 2.6 2.4 100.0 100.0
5 3.7 17.0 3.3 9.8 88.1 88.1 3.7 5.4 100.0 95.0
6 3.9 45.9 3.6 25.6 86.7 86.7 3.8 10.5 98.0 93.0
7 5.7 106.5 5.5 97.5 97.2 97.2 5.7 19.2 100.0 98.9
8 4.3 310.0 3.9 73.4 89.8 89.8 4.3 32.9 100.0 96.7
9 3.8 661.7 3.8 264.9 95.6 97.2 3.6 47.2 95.0 92.1
10 5.9 1749.9 5.4 476.4 89.5 86.1 5.9 76.3 96.7 93.3
avg. 4.0 362.5 3.8 119.0 92.4 92.2 4.0 24.5 98.7 96.1

Table 4
Average mean-pareto-solutions and percent differences as υ increases.

υ Avg. % Diff.

C
1

E
1

C
2

E
2 ΔC ΔE ΔCþΔE

200 13,868 13,470 13,800 13,430 �0.57 �0.67 �1.24
400 14,859 14,935 14,728 14,897 �0.99 �0.49 �1.49
600 15,595 16,365 15,627 16,219 0.24 �1.05 �0.81
800 16,452 17,690 16,552 17,543 0.64 �0.98 �0.34
1000 17,262 18,915 17,464 19,017 1.24 0.35 1.60
1200 17,970 20,204 18,380 20,394 2.32 0.85 3.18
1400 18,607 21,515 19,255 21,774 3.50 1.05 4.55
1600 19,407 22,871 20,077 23,134 3.53 1.11 4.64

Table 5
Mean-Pareto-solutions as υ increases for each n.

υ n¼3 n¼5 n¼7 n¼9

C
1

E
1

C
2

E
2

C
1

E
1

C
2

E
2

C
1

E
1

C
2

E
2

C
1

E
1

C
2

E
2

200 13,850 12,658 13,676 12,722 13,622 13,233 13,601 13,138 13,508 13,509 13,451 13,467 14,492 14,479 14,473 14,3,3
400 14,862 14,338 14,796 14,344 14,538 14,578 14,478 14,718 14,534 15,053 14,639 14,885 15,503 15,770 15,000 15,641
600 15,803 16,018 15,869 16,074 15,265 15,920 15,315 15,778 15,433 16,428 15,516 16,319 15,879 17,095 15,809 16,703
800 16,791 17,642 16,963 17,811 16,166 17,065 16,276 16,637 16,175 17,833 16,262 17,828 16,677 18,221 16,706 17,896

1000 17,771 19,257 18,047 19,580 16,912 17,731 17,074 17,918 16,917 19,331 17,135 19,415 17,447 19,341 17,600 19,153
1200 18,778 20,793 19,131 21,215 17,574 18,954 17,927 19,220 17,399 20,684 17,976 20,774 18,128 20,384 18,485 20,367
1400 19,645 22,314 20,200 22,861 18,316 20,236 18,737 20,543 17,809 21,892 18,780 22,089 18,657 21,618 19,304 21,603
1600 20,649 23,857 21,257 24,403 19,079 22,141 19,542 21,837 18,511 22,923 19,331 23,477 19,387 22,561 20,177 22,818

Table 6
Comparison of PF1 and PF2 to PF as υ increases.

υ n¼3 n¼5 n¼7 n¼9 Avg.

Ψ1 (%) Ψ2 (%) Ψ0 (%) Ψ1 (%) Ψ2 (%) Ψ0 (%) Ψ1 (%) Ψ2 (%) Ψ0 (%) Ψ1 Ψ2 (%) Ψ0 (%) Ψ1 (%) Ψ2 (%) Ψ0 (%)

200 5.9 55.9 38.2 18.7 59.0 22.3 14.8 44.9 40.3 1.9 59.5 38.6 10.3 54.8 34.9
400 16.6 38.6 44.8 20.4 55.2 24.4 29.3 34.3 36.4 14.1 58.9 27.0 20.1 46.7 33.1
600 47.2 11.7 41.1 28.9 44.0 27.1 56.9 8.2 34.9 23.7 49.4 26.9 39.2 28.3 32.5
800 59.0 2.2 38.8 51.8 15.1 33.1 66.3 1.2 32.6 38.5 36.8 24.7 53.9 13.8 32.3
1000 62.6 1.3 36.2 59.4 2.8 37.8 67.4 0.0 32.6 66.0 14.7 19.3 63.8 4.7 31.5
1200 62.6 1.3 36.1 66.2 3.0 30.8 67.7 5.6 26.7 87.3 2.2 10.5 70.9 3.0 26.0
1400 64.2 1.5 34.3 67.2 10.8 22.0 64.5 8.2 27.2 84.4 6.0 9.6 70.1 6.6 23.3
1600 64.5 1.1 34.4 66.0 11.5 22.5 71.6 2.9 25.5 91.7 0.0 8.3 73.4 3.9 22.7
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Table 7
Dominance comparison of PF1 and PF2 as υ increases.

υ n¼3 n¼5 n¼7 n¼9 Avg.

Ω1 (%) Ω2 (%) Ω0 (%) Ω1 (%) Ω2 (%) Ω0 (%) Ω1 (%) Ω2 (%) Ω0 (%) Ω1 (%) Ω2 (%) Ω0 (%) Ω1 (%) Ω2 (%) Ω0 (%)

200 0 20 0 0 30 0 0 10 10 0 0 0 0.0 15.0 2.5
400 0 10 0 0 40 0 0 10 10 0 10 0 0.0 17.5 2.5
600 20 0 10 0 10 10 30 0 10 0 20 0 12.5 7.5 7.5
800 20 0 10 20 0 0 30 0 10 0 10 0 17.5 2.5 5.0
1000 30 0 10 40 0 20 30 0 10 20 0 0 30.0 0.0 10.0
1200 30 0 0 40 0 10 30 0 10 40 0 0 35.0 0.0 5.0
1400 30 0 0 50 10 10 20 0 10 50 0 0 37.5 2.5 5.0
1600 30 0 0 50 10 10 30 0 10 80 0 0 47.5 2.5 5.0

Fig. 7. Illustration of the Pareto fronts under delivery scheduling policies.
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A.11. Examples of Section 5.3 with a gamma distribution

Here we give the illustrations of Pareto fronts for Examples 1–3
when the demand has a gamma distribution. Specifically, we
assume that the daily demand has mean 12 and standard deviation
8. Then, we estimate the shape parameter α¼ 122=82 ¼ 2:25 and
the scale parameter β¼ 82=12¼ 5:33. Furthermore, we assume that
a year has 300 days active, thus we let ½τ1; τ2; τ3; τ4� ¼ ½6;21;9;3�
days. The retailer has the same parameters but now ~h ¼ 0:00033=
unit=day and bh ¼ 0:00166=unit=day. Finally, after calculating the
daily cost and emission values, we multiply them by 300 to convert
them to annual values. The results are illustrated in Fig. 7.
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