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Abstract. Let {f0, · · · , fn; g0, · · · , gn} be a sequence of homoge-
neous polynomials in 2n + 2 variables with no common zeroes in
P

2n+1 and suppose that the degrees of the polynomials are such
that Q =

∑n
i=0 figi is a homogeneous polynomial. We shall refer

to the hypersurface X defined by Q as a generalised quadric. In
this note, we prove that generalised quadrics in P2n+1

C
for n ≥ 1

are reduced.

1. Introduction

Let {f0, · · · , fn; g0, · · · , gn} be a sequence of homogeneous polyno-
mials in 2n+ 2 variables with no common zeroes in P2n+1 and suppose
that the degrees of the polynomials are such that Q =

∑n
i=0 figi is a

homogeneous polynomial. We shall refer to the hypersurface X defined
by Q as a generalised quadric. In this note, we prove that generalised
quadrics in P2n+1

C
for n ≥ 1 are reduced.

In characteristic p > 0, it is easy to construct generalised quadrics
which are non-reduced. By exploiting this fact, low rank vector bundles
were constructed on P4 and P5 in [4]. Furthermore, in characteristic 0,
reducible generalised quadrics exist in P3; for instance, the hypersur-
face defined by X2Y 2−Z2U2 = 0, where X, Y, Z, U are the coordinates
of P3, is such a generalised quadric. We do not know any examples of
reducible generalised quadrics in higher dimensional projective spaces.
However, the question of non-reducedness is settled by our main theo-
rem.

In general, questions regarding irreducibility or reducedness of schemes
are difficult. Thus it was surprising to us that reducedness could be
proved for such a general class of hypersurfaces. It is conceivable that
a purely algebraic proof of this statement can be found, but we were
unable to do this. Our proof uses intersection theory and Chern classes
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over (possibly non-reduced) schemes. The impetus for the argument
came from the article of Ellingsrud et al. [2]

2. Atiyah Class and Chern classes of vector bundles

over schemes

We work over the field of complex numbers C. All schemes that we
consider will be of finite type over C.

Let X be any scheme and E be any vector bundle on X. We recall
that the Atiyah class at(E) (see [1]) of the vector bundle E is the
natural extension class

0→ Ω1
X ⊗ E → P(E)→ E → 0

where P(E) is the principal parts bundle of E. Thus at(E) is an element
of the cohomology group H1(X,Ω1

X⊗End(E)). Starting with this class,
one can define Chern-Hodge classes ci(E) ∈ Hi(X,Ωi

X) as follows (see
[3] or for a simpler exposition see [5]).

Consider the composition

(Ω1
X ⊗ End(E))⊗m → (Ω1

X)⊗m ⊗ End(E⊗m)→ Ωm
X ⊗ End(

m
∧E)→ Ωm

X

where the first map and the map Ω1⊗m
X → Ωm

X are the obvious ones,

the last map is induced by the trace map End(
m
∧E) → OX and the

map End(E⊗m)→ End(
m
∧E) in the middle is defined as f 7→ πE ◦ f ◦ j

where πE : E⊗m →
m
∧E is the natural projection and j :

m
∧E → E⊗m

is the map 1
m!

(πE∨)∨.
We then define the Chern-Hodge classes from the composite map

below:

H1(X,Ω1
X ⊗ End(E))⊗m → Hm(X, (Ω1

X ⊗ End(E))⊗m) → Hm(X,Ωm
X)

at(E)⊗m 7→ at(E) ∪ · · · ∪ at(E) 7→ cm(E)

By convention, c0(E) = 1 ∈ H0(X,OX). Furthermore, we let c(E) =∑
ci(E) which is an invertible element in the graded commutative ring

⊕i Hi(X,Ωi
X).

Now let X be any (finite type) scheme and let F be a coherent sheaf
on X which has a finite resolution by vector bundles

0→ P•X → F → 0

Definition 1. c(F) = c(P•X) := Πk c(Pk
X)(−1)k ∈ ⊕Hi(X,Ωi

X).
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We recall some basic properties of the Chern-Hodge classes. Let
P(X) 1 be the set of all sheaves on X which have a finite resolution by
vector bundles.
Properties:

1. For any sheaf F ∈ P(X), c(F) is independent of the resolution.
2. For any short exact sequence of sheaves in P(X)

0→ F ′ → F → F ′′ → 0

c(F) = c(F ′) c(F ′′).
3. For any morphism f : Y → X, there is a natural ring homomor-

phism f ∗ : ⊕i Hi(X,Ωi
X) → ⊕i Hi(Y,Ωi

Y ) under which if E is a
bundle on X, then f ∗ c(E) = c(f ∗E).

4. For any bundle E and a line bundle L, we have

cr(E ⊗ L) =
r∑
i=0

ci(E) c1(Lr−i)

5. If F ∈ P(X) and

0→ P•X → F → 0

is a finite resolution by vector bundles and if f : Y → X is any
morphism, we can define cY (F) ∈ H•(Y,Ω•Y ) as c(f ∗ P•X). In
general, this is not c(f ∗F), since this sheaf may not have a finite
resolution by vector bundles on Y . These coincide if

0→ f ∗ P•X → f ∗F → 0

remains exact and thus in this case cY (F) = c(f ∗F).
6. For any short exact sequence of sheaves in P(X)

0→ F ′ → F → F ′′ → 0

on X and a morphism f : Y → X, cY (F) = cY (F ′) cY (F ′′).
The following lemma, which is the key lemma, is essentially due to

Ellingsrud et al. [2]

Lemma 1. Let X ⊂ P
n be an irreducible hypersurface which is not

reduced. Consider the restriction maps

Hi(Ωi
Pn)

α−→Hi(Ωi
Xred

)

and

Hi(Ωi
X)

β−→Hi(Ωi
Xred

).

Then Im β = Imα for 1 ≤ i < n− 1.

1One could instead work with the more standard setting of perfect complexes.
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Proof. Since α factors through Hi(Ωi
X), we only need to show that

Imβ ⊂ Imα. Since X is irreducible, we may assume that X is defined
by a homogeneous polynomial fm,m > 1 with f irreducible and so
Xred is given by the vanishing of f . We consider the exact sequence

OX(− deg(fm))
d(fm)−−−→ Ω1

Pn
⊗OX → Ω1

X → 0

Restricting it to Xred, we get

Ω1
Pn ⊗OXred

∼= Ω1
X ⊗OXred

(1)

This implies similar isomorphisms,

Ωi
Pn ⊗OXred

∼= Ωi
X ⊗OXred

,

for all i.
Since α factors through Hi(Ωi

Pn
⊗ OXred

) and similarly β factors
through Hi(Ωi

X ⊗OXred
), it suffices to prove that the map

Hi(Ωi
Pn)

δ→ Hi(Ωi
Pn ⊗OXred

)

is onto by the isomorphism (1) above. We have an exact sequence,

0→ Ωi
Pn(−d)→ Ωi

Pn → Ωi
Pn ⊗OXred

→ 0,

where d = deg f . Taking cohomologies and noting that (see [6] page 8,
for instance) Hj(Ωi

Pn
(−d)) = 0 for j = i, i+ 1, since 1 ≤ i < n− 1, we

see that δ is an isomorphism.

Lemma 2. Let M ⊂ Pn be a closed subscheme of dimension r. Then
the natural map,

γ : Hi(Ωi
Pn)→ Hi(Ωi

M)

is injective for 0 ≤ i ≤ r.

Proof. If h ∈ H1(Pn,Ω1
Pn

) is the class of the hyperplane section, then
Hi(Pn,Ωi

Pn
) is a one dimensional vector space generated by hi. Thus,

it suffices to show that its image in Hi(M,Ωi
M) is non-zero. If it is zero

for some i < r, then hr = hihr−i = 0 ∈ Hr(M,Ωr
M). A proof of the well

known fact that hr 6= 0 is sketched in the Appendix.

Lemma 3. Let X ⊂ P
n be an irreducible hypersurface which is not

reduced. Let F be a coherent sheaf on X with a resolution 0→ P•X →
F → 0 by vector bundles on X such that 0 → P•X ⊗OM → 0 is exact
where M ⊂ Xred and dimM = r . Then 0 = cXred

i (F) ∈ Hi(X,Ωi
Xred

)
for 1 ≤ i ≤ min{r, n− 2}.
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Proof. Since 0 → P•X ⊗OM → 0 is exact, cM(F) = 1 by Property 5.
From Lemma 1 above, it follows that ∀ 1 ≤ i ≤ min{r, n − 2}, there
exist classes ti ∈ Hi(Ωi

Pn
) such that

β(ci(F)) = α(ti).

Let θ : Hi(Ωi
Xred

) → Hi(Ωi
M) be the natural map. Then θβ(ci(F)) =

cMi (F) = 0 for i > 0. Thus θα(ti) = 0. But θα = γ and by Lemma 2,
we get that ti = 0 for 1 ≤ i ≤ min{r, n− 2} and thus

cXred
i (F) = β ci(F) = 0

for 1 ≤ i ≤ min{r, n− 2}.

3. Generalised Quadrics

In this section, we apply the results of the previous section to show
that generalised quadrics in P2n+1 for n ≥ 1 are reduced.

Let Q ⊂ P2n+1 denote the generalised quadric given by the equation∑n
i=0 figi = 0. Let

Z := Q ∩ (f1 = · · · = fn = 0)

L1 := (f0 = · · · = fn = 0)

L2 := (g0 = f1 = · · · = fn = 0).

Note that L1 and L2 are also subschemes of Q. Then Z = L1 ∪ L2

and we have an exact sequence

0→ OL2(− deg f0)→ OZ → OL1 → 0.

Furthermore, Z is a complete intersection of n ample divisors on Q,
Li for i = 1, 2 are local complete intersection subschemes in Q of codi-
mension (and dimension) n.

Theorem 1. The generalised quadric Q is reduced.

Proof. If Q is not reduced, let X be an irreducible component of Q
which is not reduced and let Xred denote the subscheme X with the re-
duced structure. Thus

∑
figi = f rf ′ with f an irreducible polynomial,

r > 1 where f r = 0 defines X and f = 0 defines Xred.
Let Z ′ = Z ∩X, L′i = Li ∩X. It is easy to see that Z ′ is a complete

intersection in X by fi, i > 0. Let ai = degree fi. We consider the
Koszul resolution of OZ′ on X given by the fi’s:

0→ OX(−
∑
i

ai)→ · · · → ⊕iOX(−ai)→ OX → OZ′ → 0.

By an easy computation, it follows that

cn(OZ′) = ahn ∈ Hn(Ωn
X)
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where a = (−1)n−1(n− 1)! (Πiai) 6= 0.
On the other hand, since L′i are local complete intersections in X,

there exist finite resolutions by vector bundles over X for the sheaves
OL′i :

0→ P•i → OL′i → 0.

We have an exact sequence,

0→ OL′2(−d)→ OZ′ → OL′1 → 0

where d = deg f0 which gives by Property 2 that

c(OZ′) = c(OL′1) c(OL′2(−d)) ∈ H•(Ω•X).

Let M1 be the subscheme defined by the vanishing of g0, . . . , gn
in Xred. Then dimM1 = n and since L1 ∩ M1 = ∅, we get, 0 →
P•1⊗OM1 → 0 is exact. Since dimM1 = n = min{n, 2n + 1 − 2}, by
Lemma 3, we see that cXred(OL′1) = 1 + x, where x ∈ ⊕i>n Hi(Ωi

Xred
).

A similar argument with L2 and M2 (which is defined by the van-
ishing of f0, g1, . . . , gn on Xred) gives cXred(OL′2(−d)) = 1 + y where

y ∈ ⊕i>n Hi(Ωi
Xred

). Thus by Property 6, cXred(OZ′) = 1 + z with

z ∈ ⊕i>n Hi(Ωi
Xred

). In particular, we see that cXred
n (OZ′) = 0. But,

we have seen that this is the image of ahn for a 6= 0, h the class of
hyperplane section. By Lemma 2, this is a contradiction.

4. Appendix

As before, we shall work over C. The purpose of this appendix is to
prove the following theorem which is folklore, but we give a proof for
completeness.

Theorem 2. Let X be a projective scheme over C of dimension r ≥ 1,
h ∈ H1(X,Ω1

X) the class of a hyperplane section. Then hr in Hr(X,Ωr
X)

is not zero.

Let h ∈ H1(Pr,Ω1
Pr

) be the class of a hyperplane. We will assume the
well known facts that hi ∈ Hi(Pr,Ωi

Pr
) generates this one dimensional

vector space (in particular hi 6= 0) and c1(OPr(1)) is a non-zero multiple
of h.

Theorem 3. Let H be a hyperplane section of Pr with r ≥ 1. Then
we have a canonical isomorphism α : Hr−1(H,Ωr−1

H )→ Hr(Pr,Ωr
Pr

).

Proof. We have a canonical exact sequence,

0→ Ωr
Pr → Ωr

Pr(H)→ Ωr−1
H → 0.

This gives, by taking cohomologies an isomorphism

α : Hr−1(H,Ωr−1
H )→ Hr(Pr,Ωr

Pr),
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using the fact (see [6]) that Hi(Pr,Ωr
Pr

(H)) = 0 for i = r − 1, r.

Lemma 4. Let C be a non-singular projective curve and let L be an
ample line bundle. Then l = c1(L) ∈ H1(C,Ω1

C) is not zero.

Proof. It is clear that we may replace l by nl for any n > 0 and thus
we may assume that L is very ample. This gives, by taking two general
sections of L, a morphism f : C → P

1 with f ∗(OP1(1)) = L. Since

l = c1(L) = c1(f ∗(OP1(1))) = f ∗(c1(OP1(1))),

it suffices to prove that c1(OP1(1)) 6= 0 which we have assumed and
that f ∗ : H1(P1,Ω1

P1) → H1(C,Ω1
C) is injective. The second statement

is obvious, since the natural map Ω1
P1 → f∗Ω

1
C splits.

Proof of Theorem 2. Let Y ⊂ X be a reduced irreducible closed subva-
riety of dimension r. We have a natural map Hr(X,Ωr

X)→ Hr(Y,Ωr
Y ).

Thus it suffices to prove the theorem for Y , since hr goes to hr. Thus
we may assume that X is integral. Similarly, we may replace X by its
normalization and thus assume that X is normal. Proof is by induction
on r where the case r = 1 is treated in lemma 4.

For the induction step we proceed as follows. If h is the class of
the ample line bundle H, we may clearly replace H by nH, n > 0.
Thus we may assume that Hi(X,Ωr

X(H)) = 0 for i = r − 1, r, since
r ≥ 2. Further, by Bertini theorems, we have a section Y ∈|H| which
is integral and normal and the multiplication map Y : Ωr

X → Ωr
X(H)

is injective. Let E be the cokernel of this map. We may also assume
that we have a finite map f : X → P

r such that f ∗(OPr(1)) = H and
a section s ∈ H0(Pr,OPr(1)) such that f ∗s corresponds to Y . Let us
denote the hyperplane s = 0 by L. By our assumption, we see that the
map Hr−1(Y, E)→ Hr(X,Ωr

X) is an isomorphism. We also see that on
the smooth points of Y , E ∼= Ωr−1

Y . This says that the double dual of E
and Ωr−1

Y are isomorphic. We denote the double dual by F . Thus we
have maps E → F and Ωr−1

Y → F which are isomorphisms on the open
subset of smooth points. Since the codimension of the singular locus is
at least 2, we see that

Hr−1(Y, E) ∼= Hr−1(Y,F) ∼= Hr−1(Y,Ωr−1
Y ).

Using f , we have a commutative diagram,

Hr−1(L,Ωr−1
L )

∼=−→ Hr(Pr,Ωr
Pr

)
↓ f ∗ ↓ f ∗

Hr−1(Y, E)
∼=−→ Hr(X,Ωr

X)

We have the natural map Hr−1(L,Ωr−1
L )

f∗→ Hr−1(Y,Ωr−1
Y ) and the class

of hr−1 goes to a non-zero element by induction. But the latter group
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is isomorphic to Hr−1(Y, E) and thus hr−1 goes to a non-zero element in
this group and then by the above isomorphism, its image in Hr(X,Ωr

X)
is non-zero. Now, following hr−1 via the other branch of the commuta-
tive diagram, we see that hr 6= 0 in Hr(X,Ωr

X) by theorem 3.
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