TY - JOUR
T1 - Zwitterionic liquid crystalline polythiophene as an antibiofouling biomaterial
AU - Xu, Jinjia
AU - Xu, Jian
AU - Moon, Haesoo
AU - Sintim, Herman O.
AU - Lee, Hyowon
N1 - To address a key challenge of conjugated polymers in biomedical applications having poor antifouling properties that eventually leads to the failure and reduced lifetime of bioelectronics in the body, herein we describe the design, synthesis, and evaluation of our newly designed multifunctional zwitterionic
PY - 2021/1
Y1 - 2021/1
N2 - To address a key challenge of conjugated polymers in biomedical applications having poor antifouling properties that eventually leads to the failure and reduced lifetime of bioelectronics in the body, herein we describe the design, synthesis, and evaluation of our newly designed multifunctional zwitterionic liquid crystalline polymer PCBTh-C8C10, which is facilely synthesized using oxidative polymerization. A conjugated polythiophene backbone, a multifunctional zwitterionic side chain, and a mesogenic unit are integrated into one segment. By DSC and POM characterization, we verify that the introduction of 3,5-bis(2-octyl-1-dodecyloxy)benzene as a mesogenic unit into the polythiophene backbone allows the formation of the liquid crystalline mesophase of the resulting polymer. We also demonstrate that the PCBTh-C8C10 coated surface exhibits good conductivity, stability, hydrophilicity, and remarkable antibiofouling properties against protein adsorption, cell growth, and bacteria attachment. This new zwitterionic liquid crystalline polymer having good antibiofouling features will be widely recognized as a promising biomaterial that is applicable in implantable organic bioelectronics via inhibiting the foreign body response. A deep understanding of structure-property relationships of zwitterionic conjugated polymers has also been provided in this study.
AB - To address a key challenge of conjugated polymers in biomedical applications having poor antifouling properties that eventually leads to the failure and reduced lifetime of bioelectronics in the body, herein we describe the design, synthesis, and evaluation of our newly designed multifunctional zwitterionic liquid crystalline polymer PCBTh-C8C10, which is facilely synthesized using oxidative polymerization. A conjugated polythiophene backbone, a multifunctional zwitterionic side chain, and a mesogenic unit are integrated into one segment. By DSC and POM characterization, we verify that the introduction of 3,5-bis(2-octyl-1-dodecyloxy)benzene as a mesogenic unit into the polythiophene backbone allows the formation of the liquid crystalline mesophase of the resulting polymer. We also demonstrate that the PCBTh-C8C10 coated surface exhibits good conductivity, stability, hydrophilicity, and remarkable antibiofouling properties against protein adsorption, cell growth, and bacteria attachment. This new zwitterionic liquid crystalline polymer having good antibiofouling features will be widely recognized as a promising biomaterial that is applicable in implantable organic bioelectronics via inhibiting the foreign body response. A deep understanding of structure-property relationships of zwitterionic conjugated polymers has also been provided in this study.
KW - Amino Acid Transport Systems
KW - Biocompatible Materials
KW - Neutral
KW - Polymers
KW - Thiophenes
UR - https://doi.org/10.1039/d0tb02264k
U2 - 10.1039/d0tb02264k
DO - 10.1039/d0tb02264k
M3 - Article
VL - 9
JO - Journal of Materials Chemistry B
JF - Journal of Materials Chemistry B
ER -