Abstract
Puf3p regulates the stability of nuclear-encoded mRNAs acting in mitochondrial biogenesis and function in Saccharomyces cerevisiae . This work identifies the phosphorylation of Pop2p, a component of the deadenylase complex, as being critical for adapting Puf3p-mediated mRNA decay upon carbon source alterations. We demonstrate that the Puf3p–Pop2p association diminishes in mitochondria-reliant conditions and establish Yak1p, a kinase that phosphorylates Pop2p at threonine 97, as a new player in Puf3p-mediated regulation of mRNA decay. Yak1p deletion alters the half-life of Puf3p target mRNAs. Our findings outline a metabolism-driven regulatory switch, whereby, in mitochondria-independent conditions, Puf3p recruits Pop2p and the decay machinery to bound mRNAs for rapid decay. Conversely, in mitochondria-reliant conditions, the association of Puf3p with Yak1p increases, placing Yak1p proximal to neighboring Pop2p. Subsequent Pop2p phosphorylation reduces the Puf3p–Pop2p interaction and stabilizes Puf3p target mRNAs.
Original language | American English |
---|---|
Journal | FEBS Letters |
State | Published - 2023 |
Disciplines
- Life Sciences