Abstract
<div class="line" id="line-15"> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> Mutants defective in chloroplast development or photosynthesis are liable to accumulate higher levels of anthocyanin in photo‐oxidative stress. However, regulatory mechanisms of anthocyanin biosynthesis in the mutants remain unclear. Here, we investigated the mechanism by which the deletion of </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> thylakoid formation1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> ( </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> THF1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> ) leads to an increased level of anthocyanin in </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> Arabidopsis thaliana </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> L. Physiological and genetic evidence showed that the increased level of anthocyanin in </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> thf1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> is dependent on coronatine‐insensitive1 (COI1) signaling. Our data showed that </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> thf1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> had higher levels of basal α‐linolenic acid (α‐LeA), and methyl jasmonate (JA)‐induced α‐LeA and 12‐oxophytodienoic acid (OPDA) than the wild type (WT). Consistently, expression levels of phospholipase genes including </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> pPLAIIα </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> and </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> PLA‐Iγ1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> were elevated in </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> thf1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> . Furthermore, inhibition of lipase activity by bromoenol lactone, a specific inhibitor of plant pPLA, led to producing identical levels of anthocyanins in WT and </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> thf1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> plants. Interestingly, OPDA biosynthesis was triggered by light illumination in isolated chloroplasts, indicating that new protein import into chloroplasts is not required for OPDA biosynthesis. Thus, we conclude that the elevated anthocyanin accumulation in </span> <i style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> thf1 </i> <span style='color: rgb(28, 29, 30); font-family: "Open Sans", icomoon, sans-serif; font-size: 16px;'> is attributed to an increase in JA levels. This JA‐mediated signaling to coordinate plant metabolism and growth in stress may be conserved in other photosensitive mutants. </span></div>
Original language | American English |
---|---|
Journal | Journal of Integrative Plant Biology |
Volume | 56 |
DOIs | |
State | Published - 2014 |
Keywords
- Anthocyanin
- Arabidopsis
- THF 1
- jasmonates
- photo‐oxidative stress
- retrograde signaling
Disciplines
- Biology
- Botany