TY - JOUR
T1 - Synchronized genetic activities in Alzheimer’s brains revealed by heterogeneity-capturing network analysis
AU - Climer, Sharlee
AU - Templeton, Alan R.
AU - Garvin, Michael
AU - Jacobson, Daniel
AU - Lane, Matthew
AU - Hulver, Scott
AU - Scheid, Brittany
AU - Chen, Zheng
AU - Cruchaga, Carlos
AU - Zhang, Weixiong
N1 - It is becoming increasingly evident that the efficacy of single-gene computational analyses for complex traits is nearly exhausted and future advances hinge on unraveling the intricate combinatorial interactions among multiple genes. However, the discovery of modules of genes working in concert to manifest a complex trait has been crippled by combinatorial complexity, genetic heterogeneity, and validation biases.
PY - 2020
Y1 - 2020
N2 - It is becoming increasingly evident that the efficacy of single-gene computational analyses for complex traits is nearly exhausted and future advances hinge on unraveling the intricate combinatorial interactions among multiple genes. However, the discovery of modules of genes working in concert to manifest a complex trait has been crippled by combinatorial complexity, genetic heterogeneity, and validation biases. We introduce Maestro, a novel network approach that employs a multifaceted correlation measure, which captures heterogeneity, and a rigorous validation method. Maestro’s utilization for Alzheimer’s disease (AD) reveals an expression pattern that has virtually zero probability of simultaneous expression by an individual, assuming independence. Yet this pattern is exhibited by 19.0% of AD cases and 7.3% of controls, establishing an unprecedented pattern of synchronized genetic activities in the human brain. This pattern is significantly associated with AD, with an odds ratio of 3.0. This study substantiates Maestro’s power for discovery of orchestrated genetic activities underlying complex traits. More generally, Maestro can be applied in diverse domains in which heterogeneity exists.
AB - It is becoming increasingly evident that the efficacy of single-gene computational analyses for complex traits is nearly exhausted and future advances hinge on unraveling the intricate combinatorial interactions among multiple genes. However, the discovery of modules of genes working in concert to manifest a complex trait has been crippled by combinatorial complexity, genetic heterogeneity, and validation biases. We introduce Maestro, a novel network approach that employs a multifaceted correlation measure, which captures heterogeneity, and a rigorous validation method. Maestro’s utilization for Alzheimer’s disease (AD) reveals an expression pattern that has virtually zero probability of simultaneous expression by an individual, assuming independence. Yet this pattern is exhibited by 19.0% of AD cases and 7.3% of controls, establishing an unprecedented pattern of synchronized genetic activities in the human brain. This pattern is significantly associated with AD, with an odds ratio of 3.0. This study substantiates Maestro’s power for discovery of orchestrated genetic activities underlying complex traits. More generally, Maestro can be applied in diverse domains in which heterogeneity exists.
UR - https://doi.org/10.1101/2020.01.28.923730
U2 - 10.1101/2020.01.28.923730
DO - 10.1101/2020.01.28.923730
M3 - Article
JO - bioRxiv
JF - bioRxiv
ER -