Abstract
<div class="line" id="line-29"> <span style="font-family: Lora, serif; font-size: 20px;"> We have carried out sensitivity analysis studies to identify the most important potential parameters of the SPC and the TIP3P flexible water models in determining three distribution functions of liquid water—the site–site radial distribution functions, the distribution function of the interaction energy of a water molecule with its surrounding [ </span> <i style="font-family: Lora, serif; font-size: 20px;"> P </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> u </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ( </span> <i style="font-family: Lora, serif; font-size: 20px;"> u </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> b </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> )], and the distribution function of the local electric field at the oxygen of a water molecule projected along the permanent dipole moment vector of the water molecule [ </span> <i style="font-family: Lora, serif; font-size: 20px;"> P </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> e </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ( </span> <b style="font-family: Lora, serif; font-size: 20px;"> E </b> <span style="font-family: Lora, serif; font-size: 20px;"> ⋅μ </span> <span style="font-family: Lora, serif; font-size: 12px;"> 0 </span> <span style="font-family: Lora, serif; font-size: 20px;"> )]. The site–site radial distribution functions of each water model are most sensitive to the equilibrium O–H bond length ( </span> <i style="font-family: Lora, serif; font-size: 20px;"> r </i> <span style="font-family: Lora, serif; font-size: 12px;"> OH </span> <span style="font-family: Lora, serif; font-size: 20px;"> ) and the Lennard‐Jones radius (σ) of the model. In addition to these two parameters, the cut‐off radius ( </span> <i style="font-family: Lora, serif; font-size: 20px;"> R </i> <span style="font-family: Lora, serif; font-size: 12px;"> cut </span> <span style="font-family: Lora, serif; font-size: 20px;"> ) in the reaction field geometry and the atomic partial charges are also important in affecting </span> <i style="font-family: Lora, serif; font-size: 20px;"> P </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> u </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ( </span> <i style="font-family: Lora, serif; font-size: 20px;"> u </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> b </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ) of each model, especially the wings of the distribution. The oxygen charge affects the low energy wing of </span> <i style="font-family: Lora, serif; font-size: 20px;"> P </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> u </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ( </span> <i style="font-family: Lora, serif; font-size: 20px;"> u </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> b </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ) more than the high energy wing, whereas the hydrogen charge mainly affects the high energy wing and has little effect on the low energy wing of the distribution. As for </span> <i style="font-family: Lora, serif; font-size: 20px;"> P </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> e </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ( </span> <b style="font-family: Lora, serif; font-size: 20px;"> E </b> <span style="font-family: Lora, serif; font-size: 20px;"> ⋅μ </span> <span style="font-family: Lora, serif; font-size: 12px;"> 0 </span> <span style="font-family: Lora, serif; font-size: 20px;"> ), which provides an indirect check of the validity of the effective charge approximation in accounting for molecular polarizability, the leading factors are </span> <i style="font-family: Lora, serif; font-size: 20px;"> r </i> <span style="font-family: Lora, serif; font-size: 12px;"> OH </span> <span style="font-family: Lora, serif; font-size: 20px;"> , σ, and </span> <i style="font-family: Lora, serif; font-size: 20px;"> R </i> <span style="font-family: Lora, serif; font-size: 12px;"> cut </span> <span style="font-family: Lora, serif; font-size: 20px;"> . These parameters affect the distribution wings of </span> <i style="font-family: Lora, serif; font-size: 20px;"> P </i> <i> <span style="font-family: Lora, serif; font-size: 12px;"> e </span> </i> <span style="font-family: Lora, serif; font-size: 20px;"> ( </span> <b style="font-family: Lora, serif; font-size: 20px;"> E </b> <span style="font-family: Lora, serif; font-size: 20px;"> ⋅μ </span> <span style="font-family: Lora, serif; font-size: 12px;"> 0 </span> <span style="font-family: Lora, serif; font-size: 20px;"> ) the most. The key advantage of the sensitivity analysis technique is that it provides a systematic and economical means for studying the role of each parameter of a water model in affecting the properties of the model.   </span></div>
Original language | American English |
---|---|
Journal | Journal of Chemical Physics |
Volume | 99 |
DOIs | |
State | Published - Jan 12 1993 |
Externally published | Yes |
Disciplines
- Atomic, Molecular and Optical Physics
- Analytical Chemistry