@article{0ebd0c164f1a48c2b85f6d38709db740,
title = "On the Regularity of Matrix Refinable Functions",
author = "Qingtang Jiang",
note = "It is shown that the transition operator $\T$ associated with the matrix refinement mask $\p(\go )=2^{-d}\Sigma_{\alpha \in [0,N]^d} \p_{\alpha}\hbox{exp}(-i\alpha \go )$ is equivalent to the matrix $(2^{-d}\a _{2i-j})_{i, j}$ with $\a _j=\Sigma_{\gk \in [0, N]^d}\p _{\gk -j}\otimes \p_{\gk}$ and $\p _{\gk -j}\otimes \p_{\gk}$ denoting the Kronecker product of matrices $\p _{\gk -j}$, $\p_{\gk}$.",
year = "1998",
month = sep,
language = "American English",
volume = "29",
journal = "SIAM Journal on Mathematical Analysis",
}