On the geometry of generalized quadrics

N. Mohan Kumar, Prabhakar Rao, G. V. Ravindra

Research output: Contribution to journalArticlepeer-review

Abstract

Let  {f0,…,fn;g0,…,gn}  be a sequence of homogeneous polynomials in  2n+2  variables with no common zeros in  P2n+1  and suppose that the degrees of the polynomials are such that  Q=∑i=0nfigi  is a homogeneous polynomial. We shall refer to the hypersurface  X  defined by  Q  as a  generalized quadric . In this note, we prove that generalized quadrics in  PC2n+1  for  n≥1  are reduced.
Original languageAmerican English
JournalJournal of Pure and Applied Algebra
Volume208
DOIs
StatePublished - Mar 2007

Disciplines

  • Computer Sciences

Cite this