TY - JOUR
T1 - Metabolism of the Flavonoid Epicatechin by Laccase of Colletotrichum gloeosporioides and Its Effect on Pathogenicity on Avocado Fruits
AU - Wang, Xuemin
N1 - ABSTRACT During avocado fruit ripening, decreasing levels of the flavonoid epicatechin have been reported to modulate the metabolism of preformed antifungal compounds and the activation of quiescen...
PY - 2005
Y1 - 2005
N2 - During avocado fruit ripening, decreasing levels of the flavonoid epicatechin have been reported to modulate the metabolism of preformed antifungal compounds and the activation of quiescent Colletotrichum gloeosporioides infections. Epicatechin levels decreased as well when C. gloeosporioides was grown in the presence of epicatechin in culture. Extracts of laccase enzyme obtained from decayed tissue and culture media fully metabolized the epicatechin substrate within 4 and 20 h, respectively. Purified laccase protein from C. gloeosporioides showed an apparent MW of 60,000, an isoelectric point at pH 3.9, and maximal epicatechin degradation at pH 5.6. Inhibitors of fungal laccase such as EDTA and thioglycolic acid reduced C. gloeosporioides symptom development when applied to ripening susceptible fruits. Isolates of C. gloeosporioides with reduced laccase activity and no capability to metabolize epicatechin showed reduced pathogenicity on ripening fruits. On the contrary, Mexican isolates with increasing capabilities to metabolize epicatechin showed early symptoms of disease in unripe fruits. Transcript levels of cglac1 , encoding C. gloeosporioides laccase, were enhanced during fungal development in the presence of epicatechin at pH 6.0, where avocado fruits are susceptible to fungal attack. But transcript increase was not detected at pH 5.0, where the fruit is resistant to fungal attack. The present results suggest that biotransformation of epicatechin by C. gloeosporioides in ripening fruits is followed by the decline of the preformed antifungal diene compound, resulting in the activation of quiescent infections.
AB - During avocado fruit ripening, decreasing levels of the flavonoid epicatechin have been reported to modulate the metabolism of preformed antifungal compounds and the activation of quiescent Colletotrichum gloeosporioides infections. Epicatechin levels decreased as well when C. gloeosporioides was grown in the presence of epicatechin in culture. Extracts of laccase enzyme obtained from decayed tissue and culture media fully metabolized the epicatechin substrate within 4 and 20 h, respectively. Purified laccase protein from C. gloeosporioides showed an apparent MW of 60,000, an isoelectric point at pH 3.9, and maximal epicatechin degradation at pH 5.6. Inhibitors of fungal laccase such as EDTA and thioglycolic acid reduced C. gloeosporioides symptom development when applied to ripening susceptible fruits. Isolates of C. gloeosporioides with reduced laccase activity and no capability to metabolize epicatechin showed reduced pathogenicity on ripening fruits. On the contrary, Mexican isolates with increasing capabilities to metabolize epicatechin showed early symptoms of disease in unripe fruits. Transcript levels of cglac1 , encoding C. gloeosporioides laccase, were enhanced during fungal development in the presence of epicatechin at pH 6.0, where avocado fruits are susceptible to fungal attack. But transcript increase was not detected at pH 5.0, where the fruit is resistant to fungal attack. The present results suggest that biotransformation of epicatechin by C. gloeosporioides in ripening fruits is followed by the decline of the preformed antifungal diene compound, resulting in the activation of quiescent infections.
UR - https://doi.org/10.1094/PHYTO-95-1341
U2 - 10.1094/PHYTO-95-1341
DO - 10.1094/PHYTO-95-1341
M3 - Article
VL - 95
JO - Biochemistry and Cell Biology
JF - Biochemistry and Cell Biology
ER -