Abstract
<div class="line" id="line-7"> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> A mathematical instanton bundle on P </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 3 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> (over an algebraically closed field) is a rank two vector bundle </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> on P </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 3 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> with c </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 1 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> = 0 and with H </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 0 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ( </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ) = H </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 1 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ( </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ( </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> − </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> 2)) = 0. Let c </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 2 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ( </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ) = n. Then n > 0. A jumping line of </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> of order a, (a > 0), is a line ℓ in P </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 3 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> on which </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> splits as </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> 𝒪 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> ℓ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ( </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> − </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> a) </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ⊕𝒪 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> ℓ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> (a). It is easy to see that the jumping lines of </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> all have order </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ≤ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> n. We will say that </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> has a maximal order jumping line if it has a jumping line of order n. Our goal is to show that such an </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> is unobstructed in the moduli space of stable rank two bundles, i.e., H </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 2 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ( </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ⊗ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> ) = 0. The technique can be slightly extended. We show that when c </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 11.5px;'> 2 </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> = 5, any </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 13.8px;'> ℰ </span> <span style='font-family: Verdana, Arial, Helvetica, "sans serif"; font-size: 12px;'> with a jumping line of order 4 is unobstructed. We describe at the end how mathematical instantons with maximal order jumping lines arise and estimate the dimension of this particular smooth locus of bundles. </span></div>
Original language | American English |
---|---|
Journal | Pacific Journal of Mathematics |
Volume | 178 |
DOIs | |
State | Published - 1997 |
Disciplines
- Physical Sciences and Mathematics
- Mathematics