Abstract
Bacteria increase their metabolic capacity via the acquisition of genetic material or by the mutation of genes already present in the genome. Here, we explore the mechanisms and trade-offs involved when Shewanella oneidensis, a bacterium that typically consumes small organic and amino acids, rapidly evolves to expand its metabolic capacity to catabolize glucose after a short period of adaptation to a glucose-rich environment. Using whole-genome sequencing and genetic approaches, we discovered that deletions in a region including the transcriptional repressor (nagR) that regulates the expression of genes associated with catabolism of N-acetylglucosamine are the common basis for evolved glucose metabolism across populations. The loss of nagR results in the constitutive expression of genes for an N-acetylglucosamine permease (nagP) and kinase (nagK). We demonstrate that promiscuous activities of both NagP and NagK toward glucose allow for the transport and phosphorylation of glucose to glucose-6-phosphate, the initial events of glycolysis otherwise thought to be absent in S. oneidensis. 13C-based metabolic flux analysis uncovered that subsequent utilization was mediated by the Entner-Doudoroff pathway. This is an example whereby gene loss and preexisting enzymatic promiscuity, and not gain-of-function mutations, were the drivers of increased metabolic capacity. However, we observed a significant decrease in the growth rate on lactate after adaptation to glucose catabolism, suggesting that trade-offs may explain why glycolytic function may not be readily observed in S. oneidensis in natural environments despite it being readily accessible through just a single mutational event.
Original language | American English |
---|---|
Journal | Journal of Bacteriology |
Volume | 199 |
DOIs | |
State | Published - Jun 1 2017 |
Externally published | Yes |
Disciplines
- Biology
- Biochemistry