TY - JOUR
T1 - Going to Great Lengths: Selection for Long Corolla Tubes in an Extremely Specialized Bat-flower Mutualism
AU - Muchhala, Nathan
AU - Thomson, James D.
PY - 2009
Y1 - 2009
N2 - In a hypothesis that has remained controversial since its inception, Darwin suggested that long-tubed flowers and long-tongued pollinators evolved together in a coevolutionary race, with each selecting for increasing length in the other. Although the selective pressures that flowers impose on tongue length are relatively straightforward, in that longer tongues allow access to more nectar, selective pressures that pollinators impose on flower length are less clear. Here, we test for such selective pressures in the highly specialized mutualism between the nectar bat Anoura fistulata, which can extend its tongue twice as far as other nectar bats, and Centropogon nigricans, which has flowers of a similar length (8–9 cm). We used flight cage experiments to examine the effects of artificially manipulated flower lengths on (i) bat behaviour and (ii) pollen transfer. Increased length produced longer visits, but did not affect the force bats applied during visits. In the second experiment, flower length increased both the male and female components of flower function: long male flowers delivered more pollen grains and long female flowers received more pollen grains. However, pollen transfer was not correlated with visit duration, so the mechanism behind differences in pollen transfer remains unclear. By demonstrating that bats select for increasing flower length, these results are consistent with the hypothesis that A. fistulata evolved its remarkable tongue in a coevolutionary race with long-tubed flowers similar to that envisioned by Darwin.
AB - In a hypothesis that has remained controversial since its inception, Darwin suggested that long-tubed flowers and long-tongued pollinators evolved together in a coevolutionary race, with each selecting for increasing length in the other. Although the selective pressures that flowers impose on tongue length are relatively straightforward, in that longer tongues allow access to more nectar, selective pressures that pollinators impose on flower length are less clear. Here, we test for such selective pressures in the highly specialized mutualism between the nectar bat Anoura fistulata, which can extend its tongue twice as far as other nectar bats, and Centropogon nigricans, which has flowers of a similar length (8–9 cm). We used flight cage experiments to examine the effects of artificially manipulated flower lengths on (i) bat behaviour and (ii) pollen transfer. Increased length produced longer visits, but did not affect the force bats applied during visits. In the second experiment, flower length increased both the male and female components of flower function: long male flowers delivered more pollen grains and long female flowers received more pollen grains. However, pollen transfer was not correlated with visit duration, so the mechanism behind differences in pollen transfer remains unclear. By demonstrating that bats select for increasing flower length, these results are consistent with the hypothesis that A. fistulata evolved its remarkable tongue in a coevolutionary race with long-tubed flowers similar to that envisioned by Darwin.
UR - http://www.umsl.edu/~muchhalan/Muchhala_&_Thomson_09.pdf
M3 - Article
VL - 276
JO - Proceedings of the Royal Society B
JF - Proceedings of the Royal Society B
ER -