TY - JOUR
T1 - Competitive Triplex/Quadruplex Equilibria Involving Guanine-rich Oligonucleotides
AU - Olivas, Wendy
AU - Maher, L. J.
N1 - Biochemistry. 1995 Jan 10;34(1):278-84. Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.
PY - 1995
Y1 - 1995
N2 - Oligonucleotide-directed triple helix formation in the purine motif involves the binding of guanine-rich oligonucleotides to duplex DNA. Although this approach has been proposed for in vivo gene inhibition, triple helix formation by guanine-rich oligonucleotides is severely inhibited by physiological concentrations of certain monovalent cations (M+), especially K+. To clarify the mechanism of this inhibition, electrophoretic gel mobility shift titrations were performed to analyze the formation and stability of a purine motif triple helix in the presence of M+ and to monitor oligonucleotide aggregation under these conditions. M+ inhibition of triplex formation exhibited a concentration and ionic radius dependence that correlates with the ability of M+ to stabilize guanine quartet structures. In the presence of inhibitory [M+], guanine-rich oligonucleotides formed aggregates having characteristics consistent with the involvement of guanine quartets. The inhibitory effects of K+ on triplex formation could not be reversed by addition of the physiological polyamines spermidine3+ or spermine4+. M+ reduced the equilibrium concentration of the triplex primarily by decreasing the rate of triplex formation, but M+ also caused a detectable increase in the rate of triplex dissociation. Together, these results suggest that triplex inhibition under physiological ionic conditions is caused by competing equilibria wherein guanine-rich oligonucleotides form aggregates involving guanine quartets. Approaches to destabilizing aggregates of guanine-rich oligonucleotides under physiological conditions will be required before in vivo applications can be realistically considered.
AB - Oligonucleotide-directed triple helix formation in the purine motif involves the binding of guanine-rich oligonucleotides to duplex DNA. Although this approach has been proposed for in vivo gene inhibition, triple helix formation by guanine-rich oligonucleotides is severely inhibited by physiological concentrations of certain monovalent cations (M+), especially K+. To clarify the mechanism of this inhibition, electrophoretic gel mobility shift titrations were performed to analyze the formation and stability of a purine motif triple helix in the presence of M+ and to monitor oligonucleotide aggregation under these conditions. M+ inhibition of triplex formation exhibited a concentration and ionic radius dependence that correlates with the ability of M+ to stabilize guanine quartet structures. In the presence of inhibitory [M+], guanine-rich oligonucleotides formed aggregates having characteristics consistent with the involvement of guanine quartets. The inhibitory effects of K+ on triplex formation could not be reversed by addition of the physiological polyamines spermidine3+ or spermine4+. M+ reduced the equilibrium concentration of the triplex primarily by decreasing the rate of triplex formation, but M+ also caused a detectable increase in the rate of triplex dissociation. Together, these results suggest that triplex inhibition under physiological ionic conditions is caused by competing equilibria wherein guanine-rich oligonucleotides form aggregates involving guanine quartets. Approaches to destabilizing aggregates of guanine-rich oligonucleotides under physiological conditions will be required before in vivo applications can be realistically considered.
UR - https://www.ncbi.nlm.nih.gov/pubmed/7819208
M3 - Article
VL - 34
JO - Biochemistry Journal
JF - Biochemistry Journal
ER -