Analysis of several key factors influencing deep learning-based inter-residue contact prediction

Tianqi Wu, Jie Hou, Badri Adhikari, Jianlin Cheng

Research output: Contribution to journalArticlepeer-review

Abstract

Motivation: Deep learning has become the dominant technology for protein contact prediction. However, the factors that affect the performance of deep learning in contact prediction have not been systematically investigated. Results: We analyzed the results of our three deep learning-based contact prediction methods (MULTICOMCLUSTER, MULTICOM-CONSTRUCT and MULTICOM-NOVEL) in the CASP13 experiment and identified several key factors [i.e. deep learning technique, multiple sequence alignment (MSA), distance distribution prediction and domain-based contact integration] that influenced the contact prediction accuracy. We compared our convolutional neural network (CNN)-based contact prediction methods with three coevolution-based methods on 75 CASP13 targets consisting of 108 domains. We demonstrated that the CNN-based multi-distance approach was able to leverage global coevolutionary coupling patterns comprised of multiple correlated contacts for more accurate contact prediction than the local coevolution-based methods, leading to a substantial increase of precision by 19.2 percentage points. We also tested different alignment methods and domain-based contact prediction with the deep learning contact predictors. The comparison of the three methods showed deeper sequence alignments and the integration of domain-based contact prediction with the full-length contact prediction improved the performance of contact prediction. Moreover, we demonstrated that the domain-based contact prediction based on a novel ab initio approach of parsing domains from MSAs alone without using known protein structures was a simple, fast approach to improve contact prediction. Finally, we showed that predicting the distribution of inter-residue distances in multiple distance intervals could capture more structural information and improve binary contact prediction.

Original languageAmerican English
JournalBioinformatics
Volume32
DOIs
StatePublished - Aug 30 2019

Disciplines

  • Computer Sciences
  • Artificial Intelligence and Robotics

Cite this