TY - JOUR

T1 - Alan Turing and the Mathematical Objection

AU - Piccinini, Gualtiero

N1 - This paper concerns Alan Turing's ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements.

PY - 2003/2

Y1 - 2003/2

N2 - This paper concerns Alan Turing's ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for Turing, was not a computable sequence (i.e., one that could be generated by a Turing machine). Since computers only contained a finite number of instructions (or programs), one might argue, they could not reproduce human intelligence. Turing called this the ``mathematical objection'' to his view that machines can think. Logico-mathematical reasons, stemming from his own work, helped to convince Turing that it should be possible to reproduce human intelligence, and eventually compete with it, by developing the appropriate kind of digital computer. He felt it should be possible to program a computer so that it could learn or discover new rules, overcoming the limitations imposed by the incompleteness and undecidability results in the same way that human mathematicians presumably do.

AB - This paper concerns Alan Turing's ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for Turing, was not a computable sequence (i.e., one that could be generated by a Turing machine). Since computers only contained a finite number of instructions (or programs), one might argue, they could not reproduce human intelligence. Turing called this the ``mathematical objection'' to his view that machines can think. Logico-mathematical reasons, stemming from his own work, helped to convince Turing that it should be possible to reproduce human intelligence, and eventually compete with it, by developing the appropriate kind of digital computer. He felt it should be possible to program a computer so that it could learn or discover new rules, overcoming the limitations imposed by the incompleteness and undecidability results in the same way that human mathematicians presumably do.

KW - Artificial Intelligence

KW - Church-Turing Thesis

KW - Computability

KW - Effective Procedure

KW - Incompleteness

KW - Machine

KW - Mathematical Objection

KW - Ordinal Logics

KW - Turing

KW - Undecidability

UR - http://link.springer.com/article/10.1023/A:1021348629167

U2 - 10.1023/A:1021348629167

DO - 10.1023/A:1021348629167

M3 - Article

VL - 13

JO - Minds and Machines

JF - Minds and Machines

ER -