TY - JOUR

T1 - A Furstenberg–Katznelson–Weiss Type Theorem on (d + 1)-Point Configurations in Sets of Positive Density in Finite Field Geometries

AU - Covert, David

AU - Hart, Derrick

AU - Iosevichc, Alex

AU - Senger, Steven

AU - Uriarte-Tuero, Ignacio

N1 - We show that if E⊂Fqd, the d-dimensional vector space over the finite field with q elements, and |E|≥ρqd, where q−12≪ρ≤1, then E contains an isometric...

PY - 2011/3/28

Y1 - 2011/3/28

N2 - We show that if E ⊂ F d q , the d-dimensional vector space over the finite field with q elements, and |E| ≥ ρq d , where q − 1 2 ≪ ρ ≤ 1, then E contains an isometric copy of at least cρ d−1 q d+1 2 distinct (d + 1)-point configurations.

AB - We show that if E ⊂ F d q , the d-dimensional vector space over the finite field with q elements, and |E| ≥ ρq d , where q − 1 2 ≪ ρ ≤ 1, then E contains an isometric copy of at least cρ d−1 q d+1 2 distinct (d + 1)-point configurations.

UR - https://www.sciencedirect.com/science/article/pii/S0012365X10003961

U2 - 10.1016/j.disc.2010.10.009

DO - 10.1016/j.disc.2010.10.009

M3 - Article

VL - 311

JO - Discrete Mathematics

JF - Discrete Mathematics

ER -