TY - JOUR
T1 - A Furstenberg–Katznelson–Weiss Type Theorem on (d + 1)-Point Configurations in Sets of Positive Density in Finite Field Geometries
AU - Covert, David
AU - Hart, Derrick
AU - Iosevichc, Alex
AU - Senger, Steven
AU - Uriarte-Tuero, Ignacio
N1 - We show that if E⊂Fqd, the d-dimensional vector space over the finite field with q elements, and |E|≥ρqd, where q−12≪ρ≤1, then E contains an isometric...
PY - 2011/3/28
Y1 - 2011/3/28
N2 - We show that if E ⊂ F d q , the d-dimensional vector space over the finite field with q elements, and |E| ≥ ρq d , where q − 1 2 ≪ ρ ≤ 1, then E contains an isometric copy of at least cρ d−1 q d+1 2 distinct (d + 1)-point configurations.
AB - We show that if E ⊂ F d q , the d-dimensional vector space over the finite field with q elements, and |E| ≥ ρq d , where q − 1 2 ≪ ρ ≤ 1, then E contains an isometric copy of at least cρ d−1 q d+1 2 distinct (d + 1)-point configurations.
UR - https://www.sciencedirect.com/science/article/pii/S0012365X10003961
U2 - 10.1016/j.disc.2010.10.009
DO - 10.1016/j.disc.2010.10.009
M3 - Article
VL - 311
JO - Discrete Mathematics
JF - Discrete Mathematics
ER -